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Abstract

Category-selectivity in the brain describes the observation that certain spatially
localized areas of the cerebral cortex tend to respond robustly and selectively to
stimuli from specific limited categories. One of the most well known examples
of category-selectivity is the Fusiform Face Area (FFA), an area of the inferior
temporal cortex in primates which responds preferentially to images of faces when
compared with objects or other generic stimuli. In this work, we leverage the newly
introduced Topographic Variational Autoencoder to model of the emergence of
such localized category-selectivity in an unsupervised manner. Experimentally,
we demonstrate our model yields spatially dense neural clusters selective to faces,
bodies, and places through visualized maps of Cohen’s d metric. We compare
our model with related supervised approaches, namely the TDANN, and discuss
both theoretical and empirical similarities. Finally, we show preliminary results
suggesting that our model yields a nested spatial hierarchy of increasingly abstract
categories, analogous to observations from the human ventral temporal cortex.

1 Introduction

Category-selectivity is observed throughout the cerebral cortex. At a high level it describes the
observation that certain localized regions of the cortical surface have been measured to respond
preferentially to specific stimuli when compared with a set of alternative control images. It has been
measured across a diversity of species [29, 56, 43], directly through fMRI and neural recordings
[49], and more indirectly through observational studies of patients with localized cortical damage
[42]. Examples of category-selective areas in the visual stream include the Fuisform Face Area
(FFA) [29], the Parahippocampal Place Area (PPA) [17, 43], and the Extrastriate Body Area (EBA)
[47] which respond selectively to faces, places, and bodies respectively. However, the extent of
category-selectivity does not stop at such basic categories. Instead, selective maps have been observed
for both more abstract ‘superordinate’ categories, such as animacy versus inanimacy [22, 35], as
well as for more fine-grained ‘subordinate’ categories such as human-faces versus animal-faces [21].
These maps are seen to be superimposed on one-another such that the same cortical region expresses
selectivity simultaneously to animate objects and human-faces, while other spatially disjoint regions
are simultaneously selective to inanimacy and ‘places’ (images of scenes). Such overlapping maps
have been interpreted by some researchers as nested hierarchies of increasingly abstract categories,
potentially serving to increase the speed and efficiency of classification [19].

In interpreting these observations, one may naturally wonder as to the origins of such localized func-
tional specialization. To date, researchers have demonstrated evidence for two potential explanations.
Specifically, anatomical constraints such as the arrangement and properties of different cell bodies
can be observed to vary slightly in different regions of the cortex in loose alignment with category
selectivity [58, 12, 54]. Similarly, the principle of ‘wiring length minimization’ [36, 18] can be placed
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in this category, positing that evolutionary pressure has encouraged the brain to reduce the cumula-
tive length of neural connections in order to reduce the costs associated with the volume, building,
maintenance, and use of such connections. Computational models which attempt to integrate such
wiring length constraints [38, 62, 10] have recently have been observed to yield localized category
selectivity such as ‘face patches’ similar to those of macaque monkeys. A second hypothesis for the
emergence of category specialization, which has recently gained increasing empirical support, derives
its explanatory power from information theory. Empirical studies have discovered that sufficiently
deep convolutional neural networks naturally learn distinct and largely separate sets of features for
certain domains such as faces and objects. Specifically, the work of Dobs et al. [16], showed that
feature maps in the later layers of deep convolutional neural networks can be effectively segregated
into object and face features such that lesioning one set of feature maps does not significantly impact
performance of the network on classification of the other data domain. Such experiments, and others
[5, 33], suggest that the specialization of neurons may simply be an optimal code for representing the
natural statistics of the underlying data when given a sufficiently powerful feature extractor.

Pursuant to these ideas, this work proposes that a single underlying information theoretic principle,
namely the principle of redundancy reduction [7], may account for localized category selectivity while
simultaneously serving as a principled unsupervised learning algorithm. Simply, the principle of
redundancy reduction states that an optimal coding scheme is one which minimizes the transmission
of redundant information. Applied to neural systems, this describes the ideal network as one which
has statistically maximally independant activations – yielding a form of specialization. This idea
served as the impetus for computational frameworks such as Sparse Coding [44] and Independant
Component Analysis (ICA) [8, 15, 24, 25]. Interestingly, however, further work showed that features
learned by linear ICA models were not entirely independant, but indeed contained correlation of
higher order statistics. In response, researchers proposed a more efficient code could be achieved
by modeling these residual dependencies with a hierarchical topographic extension to ICA [26, 28],
separating out the higher order ’variance generating’ variables, and combining them locally to form
topographically organized latent variables. Such a framework shares a striking resemblance to models
of divisive normalization [40, 6], but inversely formulated as a generative model. Ultimately, the
features learned by such models were reminiscent of pinwheel structures observed in V1, encouraging
multiple comparisons with topographic organization in the biological visual system [27, 28, 41].

In this work, we leverage the recently introduced Topographic Variational Autoencoder [31, 30],
a modern instantiation of such a topographic generative model, and demonstrate that it is capable
of modeling localized category selectivity as well as higher order abstract organization, guided by
a single unsupervised learning principle. We quantitatively validate category selectivity through
visualization of Cohen’s d effect size metric for different image classes, showing selective clusters for
faces, bodies, and places. We compare our model with the supervised wiring cost proxy of Lee et al.
[38] (denoted TDANN) and demonstrate that our model yields qualitatively similar results with an
unsupervised learning rule. Finally, we show preliminary results indicating that our model contains a
nested spatial hierarchy of increasingly abstract categories, similar to those observed in the human
ventral temporal cortex [21, 19].

2 Background

Topographic Generative Models Bayesian modeling, the theoretical framework underlying prob-
abilistic generative models, has been proposed in multiple studies as a potential model of human
learning [55, 1]. Abstractly, the goal of a probabilistic generative model is to accurately capture the
true data generating process. A typical framework for generative models includes defining a joint
distribution over observations X and unobserved latent variables T, assuming that the joint factorizes
into the product of a conditional ‘generative’ distribution and a prior: pX,T(x, t) = pX|T(x|t)pT(t).
In standard generative models such as ICA or Variational Autoencoders (VAEs) [51, 32], it is common
to define a prior over latent variables such that all variables are independant. Topographic generative
models differ from this by instead having a more complex correlation structure defined by the spatial
distance between variables in a pre-defined topographic layout. In Topographic ICA (TICA) [26],
such a local-correlation structure was shown to be efficiently achievable through a 2-layer hierarchical
generative model. Specifically, at the highest layer, a set of ‘variance generating’ variables V are
independently sampled and subsequently summed in local neighborhoods to determine the variance
of lower level topographic variables T. Formally, for V ∼ N (0, I), the variances of T are given
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as σ = φ(WV), for an appropriate point-wise non-linearity φ, and a locally connected matrix W
(such as a convolution matrix). Then the vector T ∼ N (0, σ2I) can be seen to have correlations
of variance across elements Ti & Tj if these elements share a subset of their variance generating
variables V . Interestingly, the proposed wiring length proxy of prior work [38] turns out to be based
on the same underlying statistical property as the topographic generative models described in this
work, namely local correlation. This suggests that these ideas may not be mutually exclusive, and
hints at a potential fundamental connection between wiring length minimization and a generative
modeling perspective of the brain.

The Topographic VAE Inspired by linear topographic generative models such as TICA, the
Topographic Variational Autoencoder (TVAE) was recently introduced to train deep nonlinear latent
variable models with topographic structure. The model places a Topographic Product of Student’s-
T prior [59, 45] over the latent variables, and achieves efficient training through a hierarchical
construction identical to that of TICA. Formally, the model parameterizes the conditional generative
distribution with a powerful function approximator pθ(x|gθ(t)), and trains the paramters of this
model through the use of two approximate posteriors qφ(z|x) and qγ(u|x) which are combined to
construct the topographic t variable. Explicitly:

qφ(z|x) = N
(
z;µφ(x), σφ(x)I

)
qγ(u|x) = N

(
u;µγ(x), σγ(x)I

)
(1)

t =
z− µ√
Wu

pθ(x|gθ(t)) = pθ(x|gθ(z,u)) (2)

The parameters θ, φ, γ and µ are then optimized to maximize the likelihood of the data through the
Evidence Lower Bound (ELBO):

Eqφ(z|x)qγ(u|x) (log pθ(x|gθ(t))−DKL[qφ(z|x)||pZ(z)]−DKL[qγ(u|x)||pU(u)]) (3)

3 Methods

Evaluation Following prior computational work [38, 62] and fMRI studies [4], we use Cohen’s d
metric [14, 53], a measure of standardized difference of two means, as our selectivity metric. Given
the means m̄1 & m̄2 and standard deviations σ1 & σ2 of two sets of data, the d metric is given as:

d =
m̄1 − m̄2√
1
2 (σ2

1 + σ2
2)

(4)

This value is unitless and can be seen as expressing the difference between two means in terms of
units of ‘pooled variability’. In this work, the mean m̄1 corresponds to the mean activation of a single
neuron computed across an entire dataset of class-specific target images (e.g. faces), while m̄2 is the
mean activation of the same neuron across a dataset of control images which do not contain this class.

Datasets The dataset used for training both the TDANN and TVAE is a composition of the ImageNet
[52] and Labeled Faces in the Wild (LFW) datasets [23], following Lee et al. [38]. The TDANN
was trained to classify the 1000 distinct image classes from ImageNet, plus one generic face class
encompassing all of LFW. The TVAE used no such class labels and was trained entirely unsupervised.
To measure the category selectivity of the models, the primary test face dataset used in Figures 1,
2, & 4 was a ∼25,000 image subset of VGGface2 [11]. The control ’object’ dataset for Figures 1
& 4 was composed of roughly half of the images (25,000) from the validation set of ImageNet. To
measure selectivity to body parts and places in Figure 2, we created a ‘body’ dataset composed of
headless body images [60] and hands [3], and used the Place365 dataset [64] for places. In Figure 2,
the ‘control’ set used to compute selectivity for each class was defined to be the compliment of the
test set, i.e. all other datasets besides the target category of interest.

Models All models are trained on top of features extracted by the convolutional layers of a pre-
trained Alexnet model [37]. The Alexnet architecture was chosen to match the setup from Lee et al.
[38] and Zhang et al. [62], and has further been shown to have remarkable similarities to hierarchical
processing in the human visual stream [61, 13, 20]. For the TVAE, we randomly initialize and train
a single linear layer encoder and decoder with 4096 output neurons, arranged in a 64x64 grid with
circular boundary conditions to avoid edge effects. For the TDANN, we randomly initialize and train
all three fully connected layers of Alexnet, imposing the spatial correlation loss over both ‘FC6’ and
‘FC7’ following Lee et al. [38]. All hyperparameter and training details can be found in Section B.1.
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4 Experiments

In the following, we explore the category-selectivity of top-level neurons trained with the Topographic
VAE framework on realistic images. We observe that neurons do indeed become category-selective,
and that selective neurons tend to group together to form localized category-selective regions for
a variety of domains including faces, bodies, and places. We compare these results with a non-
topographic baseline (pre-trained Alexnet), and a re-implementation of the TDANN [38], observing
qualitatively similar results. Additionally, following Zhang et al. [62], we plot selectivity maps to
more abstract concepts (such as animacy and real-world size), and observe that such maps overlap in
an intuitive manner, suggesting the existence of a nested spatial hierarchy of categories.

Localized Category-Selectivity In Figure 1, we plot the continuous value of Cohen’s d metric for
all neurons as arranged in a 2-d grid. The baseline (left) shows the first fully connected layer (FC6)
of a pre-trained Alexnet architecture. As expected, the neurons of this model have no defined spatial
organization and thus result in a random selectivity map. We note the existence of class-selective
neurons is not guaranteed, but their appearance here is in-line with observations from prior work
[38, 50, 2]. Secondly, we compare our TVAE model (middle) with our re-implementation of the
TDANN [38] (right). We observe that both models demonstrate the emergence of face-selective
clusters of comparable size and density. We see that the TVAE framework appears to yield smoother
topographic maps, perhaps due to the unified objective function and unsupervised learning rule when
compared with the competing supervised classification loss and wiring cost regularization of the
TDANN. To validate the robustness of these category selective regions, in Section A of the appendix
we plot selectivity maps across four different test face datasets and four random initalizations,
observing clusters of similar size and consistent relative placement in all settings.

Figure 1: Face vs. Object selectivity for a non-topographic baseline, Topographic VAE, and TDANN.
We see the TVAE has an emergent face cluster qualitatively similar to that of the TDANN.

Figure 2: TVAE category-selectivity, d ≥ 0.85

Face, Body & Place Clusters Next, in Figure 2,
we plot the simultaneous selectivity of neurons in
our TVAE model to multiple classes including faces,
bodies, and places. To create a map of multi-class
selectivity, we follow prior work and threshold the
d metric at 0.85, considered a ‘strong effect’ [53]
and computed to be to be equivalent to a thresh-
old of 0.65 for noisy neural recordings in monkeys
[38]. In the plot we observe an overlap of neurons
with selectivity to faces and bodies, as seen in prior
computational work [38] and fMRI studies [48, 57].

Locally Distributed Activations To understand better how exactly individual images are repre-
sented by the TVAE, we present the activation maps corresponding to a single image from an array of
classes in Figure 3. We see the representation of each image is still distributed, but most strongly
activates in the associated category-selective region.
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Figure 3: Activations for single images. Left to Right: Animate, Inanimate, Faces, Places, & Hands

Nested Spatial Hierarchy of Categories Following Zhang et al. [62] we additionally measure the
selectivity maps of our TVAE model with respect to more abstract categories such as animacy and
real-world object size, obtaining such datasets from the Konkle lab database [35, 34]. Specifically,
Figure 4 shows Cohen’s d maps for animate versus inaminate objects (top), and for big versus small
objects (middle), overlayed on the face versus object map (bottom). At the largest scale, we observe
an intuitive overlap of spatial maps, specifically inanimate objects, large objects, and the place cluster
from Figure 2 all overlap in the top left and right corners of the map. We additionally highlight the
maximum activating neurons for three separate input images. We see the image of a red dresser
activates a region which is simultaneously selective to places, large, and inanimate objects, echoing
the nested spatial hierarchies thought by Grill-Spector & Weiner [19] to exist in the brain. Further,
in Section A we show that such a hierarchy appears consistently across four random initalizations.

Figure 4: Selectivity maps for abstract
categories: Animate vs. Inanimate (top),
Small vs. Big (middle), and Faces vs.
Objects (bottom). We highlight the max-
imum activating neurons for the indi-
vidual images from Figure 3 across all
maps, demonstrating their place in the
proposed nested spatial hierarchy.

5 Discussion

In this work we demonstrate the ability of topographic
generative models, namely Topographic Variational Au-
toencoders, to model the emergence of category-selective
cortical areas as well as more abstract spatial category
hierarchies. We see the model agrees qualitatively with
prior work and observations from neuroscience while be-
ing founded on a single information theoretic principle.

We note that this study is inherently preliminary and is
limited by both the small size of the models used, as well
as the feature extraction by a pre-trained convolutional
model. It is possible that class-level features and even hier-
archical organization are already partially present in some
form in the 9216-dimensional feature vectors used as in-
put, and thus it is unclear how much feature extraction the
TVAE model is itself learning. Nevertheless, we highlight
that this limitation is shared across all existing prior work
[38, 62], and that there is nothing fundamentally limiting
the TVAE framework from extending to train full deep
convolutional networks end-to-end. This is in contrast to
the existing related methods which either require a sup-
plementary learning algorithm to guide feature extraction
[38], or do not scale to high dimensional inputs [62].

In future work, we intend to explore hierarchical exten-
sions of the TVAE, modeling topographic organization of
features at multiple levels of the visual processing pipeline
while simultaneously training directly on raw pixel in-
puts. Such a model would validate the idea of end-to-end
unsupervised category-selectivity while simultaneously
providing a learned decoder from latent space to image
space, opening new avenues for experimentation.
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A Additional Results

A.1 Robustness to Initialization

To verify the robustness of our results to randomness between trials, in Figure 5 below we compare
the selectivity maps shown in the main text across four independant random initalizations of the
weights. We first note that the emergent feature hierarchy depicted in Figure 4 appears roughly
consistent across each trial. Specifically, selectivity to places, ‘big’, and ‘inanimate’ objects appears
highly overlapping in each setting. We further note that the relative placement and size of the
category-selective clusters (shown in the bottom row) is again roughly consistent across runs, with
face and body clusters always adjacent and frequently overlapping. We see that in some runs, a small
cluster selective to a generic ‘object’ category can be observed. The relative weakness of this cluster
is likely due to the lack of uniquely identifying features shared across all images in the object dataset.

Figure 5: Selectivity maps for the TVAE across four random initalizations. We observe that the
emergent feature hierarchy and the relative placement of category-clusters is consistent in each case.

A.2 Robustness to Face Dataset Choice

To investigate the robustness of face selectivity across different face datasets, and ensure the observed
clusters are not a dataset dependant phenomenon, selectivity maps for four different face datasets are
shown for both the TVAE and TDANN in Figure 6 below. Explicitly, the four datasets included: a
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25,000 subset of VGGface2 [11], 10,137 images from UTKface [63], 24,684 images from CelebA
[39], and the Labled Faces in the Wild [23] dataset upon which the models were trained. The
resulting selectivity maps can be seen to be highly consistent despite the variability between low-level
dataset statistics, indicating the observed selectivity is more likely related to the high level category
information as desired.

Figure 6: Face vs. Object selectivity maps for four different face datasets. We see that for both the
TVAE and TDANN the relative locations and sizes of the face and object selective clusters are stable
despite the differences in the underlying test datasets used.

A.3 Impact of Topographic Prior on Data Likelihood

To ensure the TVAE was learning to be a reasonable generative model of the input (the 9216-
dimensional feature vector from Alexnet), we measured the likelihood of a validation dataset under
both our TVAE and a baseline non-topographic VAE of the same architecture. We found the baseline
VAE to achieve roughly 3.4 bits per dimension (BPD) while the Topographic VAE achieved roughly
3.6 BPD in the same number of iterations. This appears consistent with the intuition and observation
that the topographic prior does not prevent learning, but rather acts as a regularization term on the
model. In future work we hope to quantify this regularization effect more precisely and determine in
which situations it may be beneficial for generalization or computational efficiency.

B Experimental details

All code for running the experiments in this paper can be found at the following repository:
https://github.com/akandykeller/CategorySelectiveTVAE

B.1 Training details

Dataset Preprocessing In order to eliminate variability between different datasets, all images
were first reshaped to 256 × 256. A random percentage of the image area (between 8% to 100%)
and a random aspect ratio (between 3

4 and 4
3 ) were then chosen, and each image was then cropped

according to these values. Finally, the crops were resized to the final shape of 224× 224. All images
were then normalized by the mean [0.48300076, 0.45126104, 0.3998704] and standard deviation
[0.26990137, 0.26078254, 0.27288908].

TDANN Hyperparameters The TDANN model was trained with stochastic gradient descent,
a learning rate of 1 × 10−3, standard momentum of 0.9, and a batch size of 128 for 10 epochs.
Explicitly, the loss function was given by a sum of the classification cross entropy loss, the spatial
correlation losses for both layers FC6 and FC7, and weight decay of 5× 10−4. A fixed weight of
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10× 1
40962 was multiplied by the spatial correlation loss before backpropagating as this was found

necessary to qualitatively match the results from Lee et al. [38]. Contrary to the original TDANN
work, we did not randomly initialize the locations of the neurons, and instead spaced them evenly
on a grid of the same size. We found the spatial correlation loss to still function equally well in this
setting, and detail our implementation in Section B.2 below.

TVAE Hyperparameters The TVAE was trained with stochastic gradient descent, a learning rate
of 1× 10−5, standard momentum of 0.9, and a batch size of 128 for 30 epochs. The global topology
was set to a single 2D torus (i.e. a 2D grid with circular boundary conditions), and the local topology
was set to sum of local regions of size 25× 25, i.e. the kernel used to convolve over u was of size
25× 25 and contained all 1’s. The µ parameter was initialized to 40, and trained simultanously with
the remainder of the model parameters.

B.2 Spatial Correlation Loss of TDANN

The exact form of the spatial correlation loss used for training the TDANN in this paper is given as:

SpatialCorrelationLoss(z) =

n∑
i

n∑
j 6=i

∣∣∣∣Cij(z)− 1

Dij + 1

∣∣∣∣ (5)

where z an n-dimensional vector of activations, C is the normalized cross correlation matrix (e.g. a
matrix of Pearson correlation coefficients), and D is a matrix containing the ‘cortical distances’ in
millimeters between all pairs of neurons i and j. In this work, we defined all neurons to be equally
spaced in a 2-D grid of 10mm × 10mm. This resulted in a horizontal and vertical spacing between
neurons of 0.15625mm and a diagonal spacing of 0.22097087mm. Unlike the TVAE, the TDANN
grid was not defined to have circular boundary conditions in order to match the original model.
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