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Abstract 47

Neural populations exhibit latent dynamical structures
that drive time-evolving spiking activities, motivating the “°
search for models that capture both intrinsic network %
dynamics and external unobserved influences. In this 5!
work, we introduce LangevinFlow, a sequential Varia- 52
tional Auto-Encoder where the time evolution of latent 5
variables is governed by the underdamped Langevin %
equation. Our approach incorporates physical priors — 5°
such as inertia, damping, a learned potential function, %
and stochastic forces — to represent both autonomous %
and non-autonomous processes in neural systems. Cru- %8
cially, the potential function is parameterized as a net- %°
work of locally coupled oscillators, biasing the model to- ¢
ward oscillatory and flow-like behaviors observed in bi- ¢
ological neural populations. Our model features a re- %2
current encoder, a one-layer Transformer decoder, and
Langevin dynamics in the latent space. Empirically, our ¢,
method outperforms state-of-the-art baselines on syn-;
thetic neural populations generated by a Lorenz attractor, ¢
closely matching ground-truth firing rates. On the Neural 4,
Latents Benchmark (NLB), the model achieves superior
held-out neuron likelihoods (bits per spike) and forward ¢
prediction accuracy across four challenging datasets. It ;,
also matches or surpasses alternative methods in decod- ;
ing behavioral metrics such as hand velocity. Overall, .
this work introduces a flexible, physics-inspired, high- ;;
performing framework for modeling complex neural pop- 7,
ulation dynamics and their unobserved influences. 75
76

Keywords: neural population dynamics; variational auto-
encoders; latent variable models 77

78
Introduction 79

Neural populations have been demonstrated to possess an *
underlying dynamical structure which drives the time evolu-*'
tion of population spiking activities (Shenoy et al, 2013} Vyas|*
et al] [2020). Uncovering these underlying latent ‘factors’ gov- &
erning neural variability has become a goal of increasing inter- %
est in the neuroscience community. Such factors have been ®
shown to be predictive of held-out neurons, future neural dy- %
namics, and even behavior (Gallego et all, [2017). Recent®
works in this field have emphasized the importance of being ss
able to model both internal deterministic dynamics, and po- s
tentially unobserved external influences (such as input from g
sensory areas, or stochastic influences from other unmea- o
sured brain regions). In established frameworks such as Au- o2
toLFADS (Pandarinath et al., [2018a), such influences have 93

been captured by separately inferred control variables which
modulate the dynamics of the inferred latent variables. Sepa-
rate work has further modeled neural activity and particularly
decision-making, through the use of learned potential func-
tions that shape attractor-like population dynamics (Genkin
et al.| 2023). Their work revealed a single decision variable
embedded in a higher-dimensional population code, where
heterogeneous neuronal firing could be explained by diverse
tuning to the same latent process. Notably, the notion of an
attractor mechanism aligns with the concept of a potential
landscape, wherein neural trajectories evolve within an energy
basin that facilitates stable or quasi-stable states. In parallel,
recent developments in Transformer architectures (Ye & Pan-
darinath| 2021} |Ye et al., [2024) offer a promising avenue for
neural data modeling by capturing long-range dependencies
and global context across entire sequences — complementing
traditional methods that focus on local temporal interactions.

Drawing from physics, the Langevin equation is a stochas-
tic differential equation which describes a system driven by
both deterministic forces and stochastic environmental influ-
ences. We propose that the Langevin equation naturally inte-
grates the key ingredients highlighted in prior studies: intrin-
sic (autonomous) dynamics, unobserved external or stochas-
tic influences, and a potential function to shape attractor-like
behavior. Specifically, we introduce a novel latent variable
model for neural data that leverages underdamped Langevin
dynamics to describe the time evolution of latent factors. This
model includes terms representing inertia, damping, a poten-
tial function, and stochastic forces arising from both internal
and external sources. Crucially, the potential function in our
model is parameterized as a network of locally coupled os-
cillators, inducing a bias towards oscillatory and flow-like dy-
namics previously observed in neural latent activity (Church-
land et al., 2012). This formulation captures the autonomous
dynamics inherent to neural systems, providing a principled
way to model both the stability and variability observed in neu-
ral responses. The oscillatory potential function also mirrors
the emergence of cortical rhythms and traveling waves that
have been linked to critical computational roles such as infor-
mation integration, synchronization, and flexible sensorimotor
processing (Ermentrout & Kleinfeld, 2001} |Buzsakil [2006).

We train the model as a sequential Variational Auto-
Encoder (VAE) (Kingma & Welling},[2013) with a recurrent en-
coder and a small one-layer transformer serving as the gen-
erative map from latent variables to neural spike rates. The
recurrent encoder effectively captures local temporal depen-
dencies in the neural data, while the Transformer decoder is
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employed to harness global context. By attending to the en-iss
tire latent sequence, the Transformer refines firing rate pre-4s
dictions through integrating information from all timesteps, en-iso
suring that long-range interactions and subtle dynamical pat-1s1
terns are well captured. This combination allows the models2
to capture complex temporal patterns and spatial correlationsiss
within the neural population data. Empirically, we first showiss
the efficacy of our LangevinFlow on synthetic neural popu-iss
lation data generated from a Lorenz attractor system, whererss
our method is able to predict the firing rates closer to theisr
ground truth than existing competitive baselines. We theniss
demonstrate state-of-the-art performance on the Neural La-ise
tents Benchmark (NLB) (Pei et al., |2021), achieving superiorieo
results in modeling held-out neuron likelihoods (co-smoothing;e1
bits per spike) and forward prediction accuracy across allez
four benchmark datasets (MC_Maze, MC_RTT, Area2_Bump, andies
DMFC_RSG), sampled at both 5 and 20 ms. The model alsores
performs comparably or better in decoding behavioral metricsies
such as hand velocity. Notably, the time evolution of latenties
representations reveals smooth spatiotemporal wave dynam-iez
ics, which is reminiscent of traveling waves observed in corti-ies
cal activity (Muller et al., 2018). This suggests that our cou-ies
pled oscillator potential might capture key computational prin-i7o
ciples underlying neural information integration. Ultimately,i71
we present this Langevin dynamics framework for neural datai72
modeling, which incorporates inductive biases from physicahzs
principles and accounts for unobserved influences through itsi7s
inherent stochastic dynamics. This general framework also al-17s
lows for the flexible design of potential functions, opening upi7s
new doors for experimentation with latent dynamical systems.i7z

178

Related Work 179

180
Neural population modeling has emerged as a key area in,,

computational neuroscience, primarily driven by technologi-,
cal advances that now allow us to simultaneously record from,,,
hundreds or even thousands of neurons (Stevenson & Kord-,,
ing} 2011). Rather than focusing on individual neurons in iso-,.
lation, population-level analyses seek to uncover the collec-
tive dynamics that shape brain function. These methods aim,,
to capture moment-to-moment variability (Churchland et al.,,.,
2006; |[Ecker et al., [2010), shed light on network-wide interac-,g,
tions (Cohen & Kohn, 2011} [Saxena & Cunningham, [2019),,.,
and relate neural activity to behavior in real time (Gallego et
al.,[2018, 2020} |Dabagia et al., [2023) — all of which are cen-
tral goals for both fundamental neuroscience research andie.
applied domains such as brain-computer interfaces (Sussillo
Stavisky, et al., |2016; [Karpowicz et al., 2022). 10
Early approaches to analyzing population neural record-gs
ings primarily focused on relatively simple statistical or latent-;o4
variable methods. Among the most widely used are linear and,q;
switching linear dynamical systems (LDS and SLDS) (Macke
et al., |2011}; [Kao et al., [2015; |Gao et al., |2016; [Linderman|®8
et al.l 2017), which model neural population activity via lin-1s
ear state transitions (or piecewise linear segments) and emis-oo
sions. Gaussian process-based approaches (Yu et al., 200801

2193

Zhao & Park, |2017};\Wu et al., |2017};|Duncker & Sahani, 2018)
impose smoothness assumptions on latent factors and allow
flexible, nonparametric modeling. However, the need for trial-
averaging and the limited expressiveness of linear or Gaus-
sian process latent variables can miss richer structures in-
herent in neural data, particularly during dynamic and non-
linear brain computations. To overcome these limitations, re-
current neural network (RNN)-based methods have emerged
as powerful tools to capture the non-linear dynamics (Zhao
& Park, 2016} [Duncker et al., [2019). One seminal work in
this space is Latent Factor Analysis via Dynamical Systems
(LFADS) (Sussillo, Jozefowicz, et al., |2016), which utilizes
RNNs to model autonomous dynamics in single trials of spik-
ing activity. LFADS infers latent trajectories that explain ob-
served neural variability and has demonstrated impressive
gains over traditional baselines. Subsequent work such as
AutoLFADS (Pandarinath et al.,[2018a) refined this framework
by allowing the model to separately infer putative “control” in-
puts, thereby accounting for unobserved external influences
(e.g., sensory input or cognitive factors) that modulate neu-
ral dynamics. Following the advances in machine learning,
recent work has begun exploring Transformer-based architec-
tures for neural data. Transformers process input tokens in
parallel, enabling potentially faster training and inference com-
pared to sequential RNNs. Their success in large-scale lan-
guage tasks has motivated adaptations such as the Neural
Data Transformer (NDT) (Ye & Pandarinath|[2021) which mod-
ifies the Transformer encoder for neural spiking data, the im-
proved version NDT2 (Ye et al., [2024) which further improves
scaling across heterogeneous contexts, and POYO (Azabou
et all 2024) which leverages both cross-attention and Per-
ceiverlO (Jaegle et al.;2022) to construct a latent tokenization
method for neural population activities.

The most relevant methods to our work are AutolL-
FADS (Pandarinath et al., 2018a) and NDT (Ye & Pandari-
nath, 2021). AutoLFADS and LFADS employ RNNs as the
encoder and decoder networks, and the temporal dynamics
are given by the hidden states, while NDT uses Transformers
to encode the spiking data and additionally adopts masked
modeling methodology to learn the context information. By
contrast, our LangevinFlow employs a recurrent encoder, an
oscillatory potential to enforce Langevin dynamics to the time
evolution of latent variables, and a single Transformer layer to
decode the entire variable sequence to firing rates.

Methodology

In this section, we first introduce the underdamped Langevin
equation, then present the sequential VAE framework, fol-
lowed by the derivation and analysis of how Langevin dynam-
ics evolve in the posterior flow of latent variables. Finally, we
discuss the model architecture and the training algorithm.

Underdamped Langevin Equation

We seek to build a latent variable model which integrates
the desired beneficial inductive biases (intrinsic dynamics,
stochastic influences, and an attractor-like potential function)
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in a principled manner. From the physics literature, a canoni-4o
cal abstract model of a system interacting with its environmentzs

is the Langevin equation: 242
243
0z ov 44

3 =V ma =F(z) —myyw+/2mykgtn(t) (1P

where z(r) denotes the (d-dimensional) state of the system at
time ¢, v represents the associated velocity, m is a diagonal
matrix of masses, F' is the set of internal forces acting on the
system (as a function of its state), yis the damping (or friction)
coefficient, kp is the Boltzmann constant, T is the temperature,
and M(z) represents high-dimensional Gaussian white noise
modeling the thermal fluctuation.

One method for defining the force field F is in terms of
the gradient of a scalar potential function F(z) = —V,U(z) 2%
This formulation allows for the description of many well-knowrg4
physical systems which have intrinsic dynamics. One abstrac2+
tion of neural dynamics is that of a network of locally couplecks
oscillators (Diamant & Bortoff, [1969; [Ermentrout & Kopell 24
1984), which admits a particularly simple potential function:

r W.
[IW|l2

Uz) =z (2)

where W, € R?*? is the symmetric matrix of coupling coeffi-
cients between the individual oscillators. For a locally coupled
system, this matrix reduces to a convolution operator in the
Toeplitz form. Driven by this coupled oscillator potential, the
time evolution of the latent state vector z will have smooth spa-
tiotemporal oscillatory dynamics (see Fig. [3).

Sequential Variational Auto-Encoder

To leverage the Langevin equation in a latent variable model of
neural data, we assert that the sequence of observed spikes?s0

X is Poisson distributed according to the firing rate 7: 251
T
p(x[F) =) Poisson(x;|r,) 3)
t=0

The firing rate is predicted by a decoder which takes as in-
put the latent state variables, detailed later. For the input se-
quence X, latent samples z, and sample velocities v, we fur- -
ther assert the following factorization of their joint dlstrlbunon

T T 254

p(%,z,v) = o) [T1pv)p(z) [ ] p(xilz,v) 255
t=1 t=0

T T (4pes

= p(vo)p(20) [ [p(v)8(z — fa(zi—1,ve-0)) [ [ p (el wi) 2:7

=1 =0 258

259
where 9(-) denotes the Dirac d-function, and f, denotes,,

the coupled Hamiltonian update which is introduced later in
Eq. (T1). Since z; and v; are coupled, the update to z is de-
terministic. We thus only define zy and use 8-functions to rep-
resent the later deterministic transformations. Here p(zo) and
p(v;) are both standard Normal distributions, and p(x;|z;, v;)
defines the mapping from latents to observations.

We employ the framework of Variational Autoencoders
(VAEs) (Kingma & Welling, [2013), extended to sequential
data, to perform inference over latent variables in this genera-
tive model. The goal of learning is to optimize the parameters
of the following set of approximate posterior distributions:

q0(z,v|x) = go(z0,v0|x0)q(z1:7,v1:7|20, V0)

T
q(zolx0)q(volxo) [ Ta(z,vilzi—1,vi-1)
t=1

(5)

T
q(zolx0)q(volxo) [ Ta(zilz—1,vi-1)g(vi|zi—1,vi-1)
=1

T
q(zolx0)q(volxo) H — felz—1,vi-1))avilz—1,vie1)
where g(z|z;—1,v;—1) and g(v/|z,—1,v,—1) are the successive
conditionals for updating z; and v; at each timestep, respec-
tively. Since the joint update of z; and v, is chosen to be au-
tonomous, we omit later x; for simplifying above posterior. We
derive the lower bound to model evidence (ELBO) as:

{10 P(x.2.9) q(z,vwa‘c)}

q(z,|x) p(z,v|x)
[\ p(x,z,7)
> B o8 50 |
[ p(x,V,20lz1:7) p(zi.7) }
=K, o |1
q6(Z,7|%)) i og q(z0,v|%,21.7) q(z1:7]20, VO:7—1) )
E, oo |log P 00/2e7) 2, 8(z — folzvic1))
q0(2,V|X)) q(207‘—,|x7zle) T7 t_fz(zrfhvtfl))
[ p(xv,2)p(¥)p(20)
=K, o |1
6@ |08 20)q(7]%.2)

p(z0) p(¥) }
q(20) q(V[%,2)
Factorizing the joint distribution over timesteps, we can further
re-write the above ELBO as:

=Eyyz iz log p(X[9,2)] + By z.9/3) {log

T

Z 96 1ng xt‘ztvvt)]

—Eyy Dt [90(20/%0)||P(20)] ] —
T

— Y Egq [Dke [go(vilzi—1,vi-1)|[p(vi)]]

t=1

log p(x

Eqgq [Dke [g6(volx0)|[p(vo)]] (7)

where the first term is the reconstruction objective, the second
and third terms define the KL divergence on the initial distribu-
tion of latent variables, and the last term regularizes the time
evolution of the posterior.

Recall that we assume that the observed spikes X are sam-
ples from a Poisson process with underlying rates 7. At each
time step, the firing rates r; are predicted as a function of the
latent variables z; and r; from the approximate posterior. The
corresponding optimization objectives are defined as:

LPolsson —

T
- Y Eg[log (Poisson(x,\r,))}
=0
LKL =, [Diw (qe(zo|xo)H p(zo))} +Egq [Dxe (qe(vo\xo) I p(vo))] (8)

T
+Y By [DKL<49(Vr|2t—laVr—l)HP(Vr))}

t=1
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where LPS501 denotes the Poisson negative log-likelihood zs7
and LKL represents the KL divergence regularization. In prac-
tical implementation, the decoder g also incorporates the en-
coder’s hidden states as part of its input. For brevity, we defer
the details and provide a more thorough explanation when in-
troducing the model architecture and referring to Fig.

Latent Langevin Posterior Flow
To derive the time evolution of the posterior, we can decom-,g
pose the underdamped Langevin equation into two steps: g

290

dz _ dv__ VU()
dt — dr m

d
Probabilistic Step: d—: = —Ww++/2mykpn (1)

291

(92

Deterministic Step:

Here the deterministic step amounts to the Hamiltonian flow
where the total energy is conserved, and the probabilistic stepess
follows the stochastic Ornstein-Uhlenbeck process. Our goaks+
is to derive the time evolution of joint posterior probability.

Hamiltonian Flow. The deterministic step of Eq. (9) actually
defines the Hamiltonian of the system:

U(z,x) 1
H(v,z7) = %ﬁ\lvﬂz (10)
N—— ——
Potential Kinetic 295

The total energy is conserved in the time evolution of the cou-=*

pled variables. Discretizing over time leads to the joint update?®’
298

[zt+1 >Vt+%} Zf(Zf,V;) = [fZafv]
oH oH (11)
= [Zt + a [At V[ azt At]

where the subscript r denote the time index, At represents the
step size in physical time, and [z, , fy, ] denotes the above cou-
pled transformation. The joint posterior q(z;.1/,,;412) obeys
the normalizing-flow-like density evolution:

logq(z 212V 1) =logq(z;,v;) +log|det(I + JyAt)| 71 (12)
where 7,/ is the Jacobian induced by the Hamiltonian. For
infinitesimal steps Af, we have:

_ Zi Vj aZ,' Zj
det(I+ Ty dt) = det [1+ S | A
aviaZj av,-az,-
(13)
e
~ 20V 20z ~
~LI+Tr| 52,/ P At =1
90z, ;0z; 299
The deterministic conditional can thus be written as: 300
301
q(z,, 1Vl 1]z, v) = 8<Z — felz, ), v, ! fv(Zth)> (14)o02
303
The posterior conserves probability mass over time. Letos

q(21+1/2;41/2) denote a trivial Dirac 3-function. Marginalizingsos

Z;4+1/2 out gives the conditional of z,;:

q(z+1lz,v1) :/5](21+1|Z,+%)‘1( Z1lzvi)dz,

- /8<Zt+1 —Zz+%)6(zt+‘ _fZ(z“v’)) )
= 5(Zt+1 —fz(Zt,Vt)>

Ornstein-Uhlenbeck Process. The probabilistic step of
Eq. (9) is given by the Ornstein—Uhlenbeck process which de-
scribes a noisy relaxation process, whereby a particle is dis-
turbed with noise 1(¢) and simultaneously relaxed to its mean
position with friction coefficient y:

dv
= WV 2mikgTn (o)

Discretizing over timesteps, the Gaussian noise yields a
Gaussian transition update as:

(15)

(16)

q(Vz+1|Zz,Vz) :/q(vH-l‘vpr%)Q(vH»%'zlavl)de»]
:/9\[((17 "y mkau)s( lffv(zt,v,)) dv,, |

= A((1=Vfolzr i) 2k
(17)
The re-parameterization trick (Kingma & Welling), 2013) is
used to allow for differentiation through the Gaussian kernel.
We alternate these two steps to compute the conditional up-
date of the joint posterior q(z;+1,Vi+1|z:, Vs )-

2.5

RNN ho [""RNN 1
Encoder Encoder

RNN hy
—
Encoder

Langevin Eq. ‘@

Latent Variable and Hidden State Sequence [Z, v, fl}

b

One-layer Transformer Decoder

Langevin Eq.

Figure 1: Workflow of our method: the RNN encoder takes the
spike data as input at every timestep and updates the hidden
states h,, and the latent variables z;,v; evolve in time accord-
ing to the Langevin equation. Finally, the Transformer decoder
predicts the firing rates from the entire sequence.

Architecture and Training Algorithm

Fig. [1] displays our model architecture. A recurrent encoder
GRU (Chung et al., 2014) is used to encode the input sequence
to a set of hidden states h, = GRU(x,_1,h,_1). The initial con-
ditions for the latent variables zg & vq are inferred from hy,
and then evolve forward in time according to both the deter-
ministic and stochastic steps. The RNN encoder is included
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Figure 2: Trial-average firing rates (top) and the corresponding spike trains (bottom) of some neurons of Lorenz system.

Table 1: Results on MC_Maze and MC_RTT with the sampling frequency of 20 ms.

Methods MC-Maze MC-RTT
co-bps (1) velR2 (1) psthR2 (1) fp-bps (1) | co-bps (1) velR2 (1) fp-bps (1)

Smoothing (Yu et al.||2008) 0.2076 0.6111 -0.0005 - 0.1454 0.3875 -

GPFA (Yu et al.|[2008) 0.2463 0.6613 0.5574 - 0.1769 0.5263 -
SLDS (Linderman et al.||2017) 0.2117 0.7944 0.4709 -0.1513 0.1662 0.5365 -0.0509
NDT (Ye & Pandarinath|[2021) 0.3597 0.8897 0.6172 0.2442 0.1643 0.6100 0.1200
AutoLFADS (Pandarinath et al.|[2018b) 0.3554 0.8906 0.6002 0.2454 0.1976 0.6105 0.1241
MINT (Perkins et al.||2023) 0.3295 0.9005 0.7474 0.2076 0.2008 0.6547 0.1099
LangevinFlow 0.3641 0.8940 0.6801 0.2573 0.2010 0.6652 0.1389

306

Algorithm 1 Training algorithm of our Langevin flow.

307

Require: Recurrent encoder GRU, Transformer-based se-

1:
2
3:
4:
5:
6
7

9:

10:

11:
12:
13:
14:

Initial hidden states: ho = GRU(xg)
Initial latent variables: [zo,vo] = n(ho)

Time step counter: i =0
whilei < T —1do

Update position (deterministic step): zi+1 = zi +v;

Update velocity (deterministic step):

V., 1 =v;— VU @)/ m

Update velocity (probabilistic step):

vipr = (1— Y)VH% + /2mykpt N (i)
Update hidden states: hj+1 = GRU(X;+1,h;)
Concatenate variable sequences:

Z=[20:i,2i41], ¥ = [Vo:i, Vie1), B = [ho.i, hit1]

Update time step counter: i =i+ 1

end while

Predict firing rates: ¥ = Transformer(z, v,

Optimize the £P0ss0" and LKL

15: until converged

)

quence decoder Transformer, linear mapping for latent®
variables n, input spike sequence X, and posterior gg.
repeat

310
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312
313
314
315
316

317

318

320

321

322

323

324
325
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to model the short-range dependencies of neural data. Af-
ter encoding input spikes and performing latent Langevin flow,
all hidden states and latent variables are combined through a
single Transformer (Vaswani et al., 2017) layer to predict the
firing rates of the sequence: T = Transformer(Z,V,h). We
use a Transformer for decoding because it can capture long-
range interactions over time and allows for a more globally in-
formed prediction of firing rates. The parameters of the GRU,
Transformer, linear readout, and potential are then optimized
to maximize the ELBO in Eq. @ We summarize the training
algorithm in Alg. [i]

Experiments

This section presents the experimental setup and the results
of our method. We start with the setup of the experiments, dis-
cuss the results on the toy dataset of synthetic Lorenz attrac-
tor, and finally present the extensive evaluation of the Neural
Latents Benchmark.

Setup

Baselines. On the synthetic Lorenz attractor dataset, we
mainly compare with AutoLFADS (Pandarinath et al., |2018a)
and NDT (Ye & Pandarinathl 2021), which are dedicated RNN
and Transformer architectures designed for neural population
modeling. On NLB, we further compare with a wide range of
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Table 2: Results on Area2_Bump and DMFC_RSG with the sampling frequency of 20 ms.

Methods Area2-Bump DMFC-RSG
co-bps (1) velR2 (1) psthR2 (1) fp-bps (1) | co-bps (1) tpcorr () psthR2(1) fp-bps (1)

Smoothing (Yu et al.| 0.1529 0.5319 -0.1840 - 0.1183 -0.5115 0.2830 -

GPFA (Yu et al.[[2008 0.1791 0.6094 0.5998 - 0.1378 -0.5506 0.3180 -
SLDS (Linderman et al.[[2017 0.1816 0.6967 0.5200 0.0132 0.1575 -0.5997 0.5470 0.0374
NDT (Ye & Pandarinath| 2021 0.2624 0.8623 0.6078 0.1459 0.1757 -0.6928 0.5477 0.1649
AutoLFADS (Pandarinath et al.||2018b 0.2542 0.8565 0.6552 0.1423 0.1871 -0.7819 0.5903 0.1791
MINT (Perkins et al.|2023] 0.2718 0.8803 0.9049 0.1489 0.1824 -0.6995 0.7014 0.1647
LangevinFlow 0.2881 0.8810 0.7641 0.1647 0.1904 -0.5981 0.6079 0.1945

“Time Evolution of Latent Sample Z (Group 1)

‘Time Evolution of Latent Sample Z (Group 2)

Figure 3: Spatiotemporal waves induced by our LangevinFlow in different views on MC_Maze.

independent set of convolution channels.

competitive baselines on the public Ieaderboardﬂ 351

Implementation Details. The Transformer decoder consistszz
of only 1 self-attention layer with 4 attention heads. An-354
other linear layer is used for reading out firing rates. For the355
Langevin equation, the mass m is set to an identity matrix, and356
both Boltzman constant kp and temperature T are set 1. The357
damping ratio vy is tuned for specific datasets but stays in the3 .
range of [0.55,0.8]. For the potential, the latent code is first
divided into 4 groups (i.e., independent convolution channels
), and we use a one-dimensional convolution layer of kernel
size 7 with padding 3 and stride 1 for each group. We adopt a
hyper-parameter A to tune the strength of the KL penalty and
add a scheduler to gradually increase the value so that the op-
timization does not quickly set the KL divergence to 0. As the
observed spikes are assumed to be from a low-dimensionakse
subspace, we use coordinated dropout (Keshtkaran & Pandar-seo
to randomly drop input samples during the train=s:
ing, which enforces the model to learn the underlying latentse2
structure shared across neurons.

363

Synthetic Lorenz Attractor zz:

The Lorenz attractor is a 3D dynamical system where the dy-,.,

namics are governed by three coupled non-linear equations: ,,

yi =062 —y3), 368
y2 =yi(p—y3)y2, (18)"
y3 =y1y2 —By3 370

Thttps://eval.ai/web/challenges/challenge- 871

page/1256/leaderboard/ 372

“Time Evolution of Latent Sample Z (Group 3) “Time Evolution of Latent Sample Z (Group 4)

Here each group denotes an

Wwhere 6,p,B are hyper-parameters. In line with
(2021), we first simulate the 3D Lorenz attractor and

then project the 3D states into a higher dimensionality using a
random linear transform to form firing rates for a population of
synthetic neurons. The spikes of each trial are sampled from
the Poisson distribution with these firing rates. The evaluat-
ing methods are expected to infer the true firing rates of the
Lorenz system from the synthetic spiking activity alone.

Table 3: R, of the firing rates on Lorenz Attractor.
| AutoLFADS NDT

Ry(1) | 0.92140.005 0.934+0.004 = 0.94440.003

LangevinFlow

Table|§| presents the results of R, correlation between the
predicted firing rates and the ground truth. Our LangevinFlow
outperforms the baselines and achieves a higher correlation
score in predicting the firing rates, indicating that our model
more accurately captures the underlying dynamical structure
of the synthetic neural data. Fig. |2| compares the predicted
trial-averaged firing rates and of several randomly selected
neurons alongside their ground truth counterparts, as well as
the corresponding spike trains. Our method closely recovers
the general shape and amplitude of the firing rate curves, and
also accurately reflects the temporal structure of spike trains.

Neural Latent Benchmark
The NLB (Pei et al, [2021) is a benchmark designed for eval-

uating unsupervised approaches that model neural popula-
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Table 4: Results on MC_Maze and MC_RTT with the sampling frequency of 5 ms.

Methods MC-Maze MC-RTT
co-bps (1) velR2 (1) psthR2 (1) fp-bps (1) | co-bps (1) velR2 (1) fp-bps (1)
Smoothing (Yu et al.|[2008) 0.2109 0.6238 0.1853 - 0.1468 0.4142 -
GPFA (Yu et al.|[2008) 0.1872 0.6399 0.5150 — 0.1548 0.5339 -
SLDS (Linderman et al.|2017) 0.2249 0.7947 0.5330 -0.1513 0.1649 0.5206 0.0620
NDT (Ye & Pandarinath||2021) 0.3229 0.8862 0.5308 0.2206 0.1749 0.5656 0.0970
AutoLFADS (Pandarinath et al.|[2018b) 0.3364 0.9097 0.6360 0.2349 0.1868 0.6167 0.1213
MINT (Perkins et al.|2023) 0.3304 0.9121 0.7496 0.2076 0.2014 0.6559 0.1099
LangevinFlow 0.3624 0.7867 0.5515 0.2556 0.1900 0.4748 0.1300
Table 5: Results on Area2_Bump and DMFC_RSG with the sampling frequency of 5 ms.
Methods Area2-Bump DMFC-RSG
co-bps (1) velR2 (1) psthR2 (1) fp-bps (1) | co-bps (1) tpcorr () psthR2 (1) fp-bps (1)
Smoothing (Yu et al.| 2008} 0.1544 0.5736 0.2084 - 0.1202 -0.5139 0.2993 -
GPFA (Yu et al.||2008) 0.1680 0.5975 0.5289 - 0.1176 -0.3763 0.2142 -
SLDS (Linderman et al.|[2017) 0.1960 0.7385 0.5740 0.0242 0.1243 -0.5412 0.3372 -0.0418
NDT (Ye & Pandarinath/{2021) 0.2623 0.8672 0.6619 0.1184 0.1720 -0.5624 0.4377 0.1404
AutoLFADS (Pandarinath et al.||2018b) 0.2569 0.8492 0.6318 0.1505 0.1829 -0.8248 0.6359 0.1844
MINT (Perkins et al.}[2023) 0.2735 0.8877 0.9135 0.1483 0.1821 -0.6929 0.7013 0.1650
LangevinFlow 0.2772 0.8580 0.7567 0.1526 0.1841 -0.5466 0.6092 0.1689
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Figure 4: Kinematics (hand velocities and trajectories) of theso
ground truth and predicted by our method on Area2_Bump. 4ot
402

403
tion activities. This benchmark provides four curated neuro-s4
physiological datasets from monkeys that span motor, sen-s
sory, and cognitive brain regions, with behaviors that vary fromygs
pre-planned, stereotyped movements to those in which sen-47
sory input must be dynamically integrated. The primary metricys
co-smoothing (Macke et al.}[2011) evaluates the normalizedsy
log-likelihood of held-out neuronal activity prediction, while theso
secondary metrics can include behavior decoding accuracyi
match to PSTH, or log-likelihood of forward predictions. Twos1>
sampling frequencies (5ms and 20ms) are pre-defined to ob-3
tain datasets with different sequence lengths. 414
20 ms Results. In Table[Tand[2] we see that our Langev-sis
inFlow achieves state of the art on the likelihood of held-outsis
neurons (co-smoothing bits per spike), as well as forward pre-s17
diction bits per spike. The model also compares very favorablysis
in terms of the behavioral metrics such as hand-velocity re-ss

gression. The model is not state of the art on PSTH R, which
may be expected given the known trade-off between the co-
bps metric and the performance on trial-averaged PSTH cor-
relation metric. The overall performance across multiple met-
rics underscores its robustness in capturing neural dynamics.

5 ms Results. Table [4] and [5] report the evaluation results
on NLB with the sampling frequency of 5 ms. The results at
this higher temporal resolution are very coherent with those of
20 ms. Our LangevinFlow maintains impressive performance,
achieving strong likelihood scores on held-out neurons and
forward predictions on most datasets. This consistency across
different sampling frequencies confirms the model’s ability to
adapt to varying temporal granularities, which is critical for
capturing the fine-scale dynamics present in neural data.

Spatiotemporal Wave Dynamics. Fig. [3 displays the
smooth spatiotemporal waves induced by our coupled oscil-
lator potential. We can see that the latent variables in differ-
ent convolution groups exhibit clear but distinct wave patterns,
reminiscent of traveling waves observed in cortical activity (Er-
mentrout & Kleinfeld, 2001} [Muller et al.l 2014). Such wave
dynamics are thought to play several key computational roles
in neuroscience. For example, traveling waves have been
proposed to facilitate the integration of information over dis-
tributed neural populations, serving as a mechanism for coor-
dinating activity across different brain regions (Buzsaki, 2006;
Miller et al., 2009; |Muller et al.,|2018). They can help synchro-
nize the timing of neural firing, thereby enhancing signal prop-
agation and ensuring that information is efficiently routed and
integrated. Moreover, wave dynamics may support processes
such as working memory, decision-making, preditive decod-
ing, and sensorimotor integration (Sato et al.| [2012; [Engel et
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al., |2013; |Besserve et al., 2015; |Alamia & VanRullen, 2019js2
Friston| 2019). In our model, the emergence of these wavesss
patterns not only reflects the inherent oscillatory dynamics ofiss
the neural data, but also suggests that our coupled oscillatorsss
potential may be capturing similar computational principlesass
contributing to the robust performance of our approach. 457

Kinematics Visualization. Fig. @ illustrates the time evolu-**

tion of key kinematic variables on the Area2_Bump dataset, in-""°
cluding hand X and Y velocities, as well as the overall hand™®®
trajectories. The high behavior decoding accuracy of our™®'
model is evident here: linear regression models fitted on pre-***
dicted firing rates yield kinematic outputs that closely match®
the ground truth. These results validate the accuracy of the*®*
neural activity reconstruction, demonstrating the practical util-**®

ity of our approach in decoding behaviorally relevant signals. *¢
467

468
Table 6: Results of ablation studies with the sampling fre-4

quency of 20 ms on MC_Maze (top) and Area2 _Bump (bottom).o

\ co-bps (1) velR2 (1) psthR2 (1) fp-bps (1) 471
LangevinFlow ‘ 0.3641 0.8940 0.6801 0.2573 472
Baseline 1 0.3572 0.8893 0.6683 02419 7
Baseline 2 0.3328 0.8579 0.6812 0.2549 474
Baseline 3 0.3441 0.8109 0.4684 0.2506 475
Baseline 4 0.3612 0.9005 0.6743 0.2469 476
Baseline 5 0.3586 0.8932 0.6881 0.2351 477
\ co-bps (1) velR2 (1) psth R2(T) fp-bps (1) 478
LangevinFlow ‘ 0.2881 0.8810 0.7641 0.1647 479
Baseline 1 0.2795 0.8725 0.7386 0.1549 8
Baseline 2 0.2679 0.8641 0.7013 0.1488 481
Baseline 3 0.2838 0.8552 0.7165 0.1498 482
Baseline 4 0.2800 0.8739 0.7803 0.1631 483
Baseline 5 0.2843 0.8614 0.6994 0.1596

484

485

Ablation Studies. Finally, we designed a number of base-
lines and performed ablations to understand the role each
component of our LangevinFlow plays on overall performance.487
Specifically, we considered the following model variants: 488
489
* Baseline 1: a linear decoder in place of the Transformer. -
* Baseline 2: a linear encoder with no hidden states. o
492
* Baseline 3: a model without Langevin dynamics relyingss

solely on hidden state dynamics. 494

495

* Baseline 4: a variant in which the oscillator potential

also couples latent variables to input spikes. Explicitly:
U(z,x) =z HVV‘Y;szJrzTWxx.

498

* Baseline 5: a version using first-order dynamics instead of**®

Langevin dynamics. Explicitly: z;+1 = z: — V5, U (). 500
501

Table [6] shows the results on MC_Maze and Area2 _Bump. Inso
Baseline 1, we replaced the Transformer decoder with a linearses
decoder. Compared to LangevinFlow, this variant has slightlysos
lower co-smoothing (co-bps) and forward prediction (fp-bps)sos

scores, which indicate the importance of the Transformer in
capturing global interactions across the entire latent sequence
and in refining firing rate predictions. The global attention
mechanism appears to integrate information more effectively
than a simpler linear mapping.

Baseline 2 removes the hidden states from the encoder by
replacing the recurrent network with a linear encoder. This
modification leads to a noticeable drop in performance, par-
ticularly in the co-bps and velocity R2 scores. This suggests
that the local temporal dependencies captured by recurrent
hidden states are essential for modeling the short-range dy-
namics present in the neural spike activity.

Baseline 3 completely omits Langevin dynamics and relies
solely on hidden state dynamics. This modification results in a
marked performance drop, especially evident in the significant
drop in PSTH R2 on MC_Maze. This decline emphasizes the
crucial role of incorporating Langevin dynamics with a learned
potential, which represents intrinsic autonomous processes
and facilitates the emergence of oscillations. The Langevin
dynamics are thus expected to help the model capture the un-
derlying dynamical system more faithfully.

In Baseline 4, we augment the oscillator potential by incor-
porating the input spiking signal. This modification does not
provide a substantial benefit to the performance and in some
cases slightly underperforms the original model. This result
suggests that the learned potential function in its original for-
mulation is already capturing the necessary dependencies.

Finally, Baseline 5 substitutes the second-order Langevin
dynamics with a simpler first-order update rule. The observed
performance drop in several metrics confirms that the second-
order Langevin dynamics — featuring terms for inertia and
damping — is more effective in modeling the neural dynamics.
The richer dynamics afforded by the second-order formulation
appear to better capture both the smooth evolution and the
inherent variability of the underlying latent factors.

Conclusions

This paper presents LangevinFlow, a sequential variational
autoencoder whose latent dynamics are governed by un-
derdamped Langevin equations. By embedding physically
grounded stochastic processes and coupled oscillatory be-
havior into the latent space, our framework offers a power-
ful avenue for modeling complex neural population activity.
We anticipate that these ideas will inspire further exploration
of physics-informed inductive biases in neural latent variable
modeling, paving the way for even richer and more inter-
pretable dynamical systems approaches.

Limitations and Future Work. While our framework was
shown to yield very promising results, our proposed Langevin
dynamics with the present potential function operate in a
largely autonomous manner. This formulation seemed to
work better than an input-dependent potential in ablation stud-
ies; however, adding more input dependence to this potential
should intuitively help Langevin dynamics better account for
external influences. In future work, exploring more complex
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input-dependent potential functions could likely yield signifi-sos
cant benefits and are a promising new avenue for research,,,

uniquely enabled by our LangevinFlow framework.
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