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Abstract1

Neural populations exhibit latent dynamical structures2

that drive time-evolving spiking activities, motivating the3

search for models that capture both intrinsic network4

dynamics and external unobserved influences. In this5

work, we introduce LangevinFlow, a sequential Varia-6

tional Auto-Encoder where the time evolution of latent7

variables is governed by the underdamped Langevin8

equation. Our approach incorporates physical priors —9

such as inertia, damping, a learned potential function,10

and stochastic forces — to represent both autonomous11

and non-autonomous processes in neural systems. Cru-12

cially, the potential function is parameterized as a net-13

work of locally coupled oscillators, biasing the model to-14

ward oscillatory and flow-like behaviors observed in bi-15

ological neural populations. Our model features a re-16

current encoder, a one-layer Transformer decoder, and17

Langevin dynamics in the latent space. Empirically, our18

method outperforms state-of-the-art baselines on syn-19

thetic neural populations generated by a Lorenz attractor,20

closely matching ground-truth firing rates. On the Neural21

Latents Benchmark (NLB), the model achieves superior22

held-out neuron likelihoods (bits per spike) and forward23

prediction accuracy across four challenging datasets. It24

also matches or surpasses alternative methods in decod-25

ing behavioral metrics such as hand velocity. Overall,26

this work introduces a flexible, physics-inspired, high-27

performing framework for modeling complex neural pop-28

ulation dynamics and their unobserved influences.29

Keywords: neural population dynamics; variational auto-30

encoders; latent variable models31

Introduction32

Neural populations have been demonstrated to possess an33

underlying dynamical structure which drives the time evolu-34

tion of population spiking activities (Shenoy et al., 2013; Vyas35

et al., 2020). Uncovering these underlying latent ‘factors’ gov-36

erning neural variability has become a goal of increasing inter-37

est in the neuroscience community. Such factors have been38

shown to be predictive of held-out neurons, future neural dy-39

namics, and even behavior (Gallego et al., 2017). Recent40

works in this field have emphasized the importance of being41

able to model both internal deterministic dynamics, and po-42

tentially unobserved external influences (such as input from43

sensory areas, or stochastic influences from other unmea-44

sured brain regions). In established frameworks such as Au-45

toLFADS (Pandarinath et al., 2018a), such influences have46

been captured by separately inferred control variables which47

modulate the dynamics of the inferred latent variables. Sepa-48

rate work has further modeled neural activity and particularly49

decision-making, through the use of learned potential func-50

tions that shape attractor-like population dynamics (Genkin51

et al., 2023). Their work revealed a single decision variable52

embedded in a higher-dimensional population code, where53

heterogeneous neuronal firing could be explained by diverse54

tuning to the same latent process. Notably, the notion of an55

attractor mechanism aligns with the concept of a potential56

landscape, wherein neural trajectories evolve within an energy57

basin that facilitates stable or quasi-stable states. In parallel,58

recent developments in Transformer architectures (Ye & Pan-59

darinath, 2021; Ye et al., 2024) offer a promising avenue for60

neural data modeling by capturing long-range dependencies61

and global context across entire sequences – complementing62

traditional methods that focus on local temporal interactions.63

Drawing from physics, the Langevin equation is a stochas-64

tic differential equation which describes a system driven by65

both deterministic forces and stochastic environmental influ-66

ences. We propose that the Langevin equation naturally inte-67

grates the key ingredients highlighted in prior studies: intrin-68

sic (autonomous) dynamics, unobserved external or stochas-69

tic influences, and a potential function to shape attractor-like70

behavior. Specifically, we introduce a novel latent variable71

model for neural data that leverages underdamped Langevin72

dynamics to describe the time evolution of latent factors. This73

model includes terms representing inertia, damping, a poten-74

tial function, and stochastic forces arising from both internal75

and external sources. Crucially, the potential function in our76

model is parameterized as a network of locally coupled os-77

cillators, inducing a bias towards oscillatory and flow-like dy-78

namics previously observed in neural latent activity (Church-79

land et al., 2012). This formulation captures the autonomous80

dynamics inherent to neural systems, providing a principled81

way to model both the stability and variability observed in neu-82

ral responses. The oscillatory potential function also mirrors83

the emergence of cortical rhythms and traveling waves that84

have been linked to critical computational roles such as infor-85

mation integration, synchronization, and flexible sensorimotor86

processing (Ermentrout & Kleinfeld, 2001; Buzsaki, 2006).87

We train the model as a sequential Variational Auto-88

Encoder (VAE) (Kingma & Welling, 2013) with a recurrent en-89

coder and a small one-layer transformer serving as the gen-90

erative map from latent variables to neural spike rates. The91

recurrent encoder effectively captures local temporal depen-92

dencies in the neural data, while the Transformer decoder is93



employed to harness global context. By attending to the en-94

tire latent sequence, the Transformer refines firing rate pre-95

dictions through integrating information from all timesteps, en-96

suring that long-range interactions and subtle dynamical pat-97

terns are well captured. This combination allows the model98

to capture complex temporal patterns and spatial correlations99

within the neural population data. Empirically, we first show100

the efficacy of our LangevinFlow on synthetic neural popu-101

lation data generated from a Lorenz attractor system, where102

our method is able to predict the firing rates closer to the103

ground truth than existing competitive baselines. We then104

demonstrate state-of-the-art performance on the Neural La-105

tents Benchmark (NLB) (Pei et al., 2021), achieving superior106

results in modeling held-out neuron likelihoods (co-smoothing,107

bits per spike) and forward prediction accuracy across all108

four benchmark datasets (MC Maze, MC RTT, Area2 Bump, and109

DMFC RSG), sampled at both 5 and 20 ms. The model also110

performs comparably or better in decoding behavioral metrics111

such as hand velocity. Notably, the time evolution of latent112

representations reveals smooth spatiotemporal wave dynam-113

ics, which is reminiscent of traveling waves observed in corti-114

cal activity (Muller et al., 2018). This suggests that our cou-115

pled oscillator potential might capture key computational prin-116

ciples underlying neural information integration. Ultimately,117

we present this Langevin dynamics framework for neural data118

modeling, which incorporates inductive biases from physical119

principles and accounts for unobserved influences through its120

inherent stochastic dynamics. This general framework also al-121

lows for the flexible design of potential functions, opening up122

new doors for experimentation with latent dynamical systems.123

Related Work124

Neural population modeling has emerged as a key area in125

computational neuroscience, primarily driven by technologi-126

cal advances that now allow us to simultaneously record from127

hundreds or even thousands of neurons (Stevenson & Kord-128

ing, 2011). Rather than focusing on individual neurons in iso-129

lation, population-level analyses seek to uncover the collec-130

tive dynamics that shape brain function. These methods aim131

to capture moment-to-moment variability (Churchland et al.,132

2006; Ecker et al., 2010), shed light on network-wide interac-133

tions (Cohen & Kohn, 2011; Saxena & Cunningham, 2019),134

and relate neural activity to behavior in real time (Gallego et135

al., 2018, 2020; Dabagia et al., 2023) — all of which are cen-136

tral goals for both fundamental neuroscience research and137

applied domains such as brain-computer interfaces (Sussillo,138

Stavisky, et al., 2016; Karpowicz et al., 2022).139

Early approaches to analyzing population neural record-140

ings primarily focused on relatively simple statistical or latent-141

variable methods. Among the most widely used are linear and142

switching linear dynamical systems (LDS and SLDS) (Macke143

et al., 2011; Kao et al., 2015; Gao et al., 2016; Linderman144

et al., 2017), which model neural population activity via lin-145

ear state transitions (or piecewise linear segments) and emis-146

sions. Gaussian process-based approaches (Yu et al., 2008;147

Zhao & Park, 2017; Wu et al., 2017; Duncker & Sahani, 2018)148

impose smoothness assumptions on latent factors and allow149

flexible, nonparametric modeling. However, the need for trial-150

averaging and the limited expressiveness of linear or Gaus-151

sian process latent variables can miss richer structures in-152

herent in neural data, particularly during dynamic and non-153

linear brain computations. To overcome these limitations, re-154

current neural network (RNN)-based methods have emerged155

as powerful tools to capture the non-linear dynamics (Zhao156

& Park, 2016; Duncker et al., 2019). One seminal work in157

this space is Latent Factor Analysis via Dynamical Systems158

(LFADS) (Sussillo, Jozefowicz, et al., 2016), which utilizes159

RNNs to model autonomous dynamics in single trials of spik-160

ing activity. LFADS infers latent trajectories that explain ob-161

served neural variability and has demonstrated impressive162

gains over traditional baselines. Subsequent work such as163

AutoLFADS (Pandarinath et al., 2018a) refined this framework164

by allowing the model to separately infer putative “control” in-165

puts, thereby accounting for unobserved external influences166

(e.g., sensory input or cognitive factors) that modulate neu-167

ral dynamics. Following the advances in machine learning,168

recent work has begun exploring Transformer-based architec-169

tures for neural data. Transformers process input tokens in170

parallel, enabling potentially faster training and inference com-171

pared to sequential RNNs. Their success in large-scale lan-172

guage tasks has motivated adaptations such as the Neural173

Data Transformer (NDT) (Ye & Pandarinath, 2021) which mod-174

ifies the Transformer encoder for neural spiking data, the im-175

proved version NDT2 (Ye et al., 2024) which further improves176

scaling across heterogeneous contexts, and POYO (Azabou177

et al., 2024) which leverages both cross-attention and Per-178

ceiverIO (Jaegle et al., 2022) to construct a latent tokenization179

method for neural population activities.180

The most relevant methods to our work are AutoL-181

FADS (Pandarinath et al., 2018a) and NDT (Ye & Pandari-182

nath, 2021). AutoLFADS and LFADS employ RNNs as the183

encoder and decoder networks, and the temporal dynamics184

are given by the hidden states, while NDT uses Transformers185

to encode the spiking data and additionally adopts masked186

modeling methodology to learn the context information. By187

contrast, our LangevinFlow employs a recurrent encoder, an188

oscillatory potential to enforce Langevin dynamics to the time189

evolution of latent variables, and a single Transformer layer to190

decode the entire variable sequence to firing rates.191

Methodology192

In this section, we first introduce the underdamped Langevin193

equation, then present the sequential VAE framework, fol-194

lowed by the derivation and analysis of how Langevin dynam-195

ics evolve in the posterior flow of latent variables. Finally, we196

discuss the model architecture and the training algorithm.197

Underdamped Langevin Equation198

We seek to build a latent variable model which integrates199

the desired beneficial inductive biases (intrinsic dynamics,200

stochastic influences, and an attractor-like potential function)201



in a principled manner. From the physics literature, a canoni-202

cal abstract model of a system interacting with its environment203

is the Langevin equation:204

∂zzz
∂t

= vvv, m
∂vvv
∂t

= F(zzz)−mγvvv+
√

2mγkBτηηη(t) (1)

where zzz(t) denotes the (d-dimensional) state of the system at205

time t, vvv represents the associated velocity, m is a diagonal206

matrix of masses, F is the set of internal forces acting on the207

system (as a function of its state), γ is the damping (or friction)208

coefficient, kB is the Boltzmann constant, τ is the temperature,209

and ηηη(t) represents high-dimensional Gaussian white noise210

modeling the thermal fluctuation.211

One method for defining the force field F is in terms of212

the gradient of a scalar potential function F(z) = −∇zU(z).213

This formulation allows for the description of many well-known214

physical systems which have intrinsic dynamics. One abstrac-215

tion of neural dynamics is that of a network of locally coupled216

oscillators (Diamant & Bortoff, 1969; Ermentrout & Kopell,217

1984), which admits a particularly simple potential function:218

U(zzz) = zzzT WWW zzz

||WWW zzz||2
zzz (2)

where WWW zzz ∈ Rd×d is the symmetric matrix of coupling coeffi-219

cients between the individual oscillators. For a locally coupled220

system, this matrix reduces to a convolution operator in the221

Toeplitz form. Driven by this coupled oscillator potential, the222

time evolution of the latent state vector zzz will have smooth spa-223

tiotemporal oscillatory dynamics (see Fig. 3).224

Sequential Variational Auto-Encoder225

To leverage the Langevin equation in a latent variable model of226

neural data, we assert that the sequence of observed spikes227

x̄xx is Poisson distributed according to the firing rate r̄rr:228

p(x̄xx|r̄rr) =
T

∑
t=0

Poisson(xxxt |rrrt) (3)

The firing rate is predicted by a decoder which takes as in-229

put the latent state variables, detailed later. For the input se-230

quence x̄xx, latent samples z̄zz, and sample velocities v̄vv, we fur-231

ther assert the following factorization of their joint distribution:232

p(x̄xx, z̄zz, v̄vv) = p(vvv0)p(zzz0)
T

∏
t=1

p(vvvt)p(zzzt)
T

∏
t=0

p(xxxt |zzzt ,vvvt)

= p(vvv0)p(zzz0)
T

∏
t=1

p(vvvt)δ(zzzt − fzzz(zzzt−1,vvvt−1))
T

∏
t=0

p(xxxt |zzzt ,vvvt)

(4)

where δ(·) denotes the Dirac δ-function, and fzzz denotes233

the coupled Hamiltonian update which is introduced later in234

Eq. (11). Since zzzt and vvvt are coupled, the update to zzz is de-235

terministic. We thus only define zzz0 and use δ-functions to rep-236

resent the later deterministic transformations. Here p(zzz0) and237

p(vvvt) are both standard Normal distributions, and p(xxxt |zzzt ,vvvt)238

defines the mapping from latents to observations.239

We employ the framework of Variational Autoencoders240

(VAEs) (Kingma & Welling, 2013), extended to sequential241

data, to perform inference over latent variables in this genera-242

tive model. The goal of learning is to optimize the parameters243

of the following set of approximate posterior distributions:244

qθ(z̄zz, v̄vv|x̄xx) = qθ(zzz0,vvv0|xxx0)q(zzz1:T ,vvv1:T |zzz0,vvv0)

= q(zzz0|xxx0)q(vvv0|xxx0)
T

∏
t=1

q(zzzt ,vvvt |zzzt−1,vvvt−1)

= q(zzz0|xxx0)q(vvv0|xxx0)
T

∏
t=1

q(zzzt |zzzt−1,vvvt−1)q(vvvt |zzzt−1,vvvt−1)

= q(zzz0|xxx0)q(vvv0|xxx0)
T

∏
t=1

δ(zzzt − fzzz(zzzt−1,vvvt−1))q(vvvt |zzzt−1,vvvt−1)

(5)

where q(zzzt |zzzt−1,vvvt−1) and q(vvvt |zzzt−1,vvvt−1) are the successive245

conditionals for updating zzzt and vvvt at each timestep, respec-246

tively. Since the joint update of zzzt and vvvt is chosen to be au-247

tonomous, we omit later xxxt for simplifying above posterior. We248

derive the lower bound to model evidence (ELBO) as:249

log p(x̄xx) = Eqθ(z̄zz,v̄vv|x̄xx))

[
log

p(x̄xx, z̄zz, v̄vv)
q(z̄zz, v̄vv|x̄xx)

q(z̄zz, v̄vv|x̄xx)
p(z̄zz, v̄vv|x̄xx)

]
≥ Eqθ(z̄zz,v̄vv|x̄xx))

[
log

p(x̄xx, z̄zz, v̄vv)
q(z̄zz, v̄vv|x̄xx)

]
= Eqθ(z̄zz,v̄vv|x̄xx))

[
log

p(x̄xx, v̄vv,zzz0|zzz1:T )

q(zzz0, v̄vv|x̄xx,zzz1:T )

p(zzz1:T )

q(zzz1:T |zzz0,vvv0:T−1)

]
= Eqθ(z̄zz,v̄vv|x̄xx))

[
log

p(x̄xx, v̄vv,zzz0|zzz1:T )

q(zzz0, v̄vv|x̄xx,zzz1:T )������������
∏

T
t=1 δ(zzzt − fzzz(zzzt−1,vvvt−1))

∏
T
t=1 δ(zzzt − fzzz(zzzt−1,vvvt−1))

]

= Eqθ(z̄zz,v̄vv|x̄xx))

[
log

p(x̄xx|v̄vv, z̄zz)p(v̄vv)p(zzz0)

q(zzz0)q(v̄vv|x̄xx, z̄zz)

]
= Eqθ(z̄zz,v̄vv|x̄xx) [log p(x̄xx|v̄vv, z̄zz)]+Eqθ(z̄zz,v̄vv|x̄xx)

[
log

p(zzz0)

q(zzz0)

p(v̄vv)
q(v̄vv|x̄xx, z̄zz)

]

(6)

Factorizing the joint distribution over timesteps, we can further250

re-write the above ELBO as:251

log p(x̄xx)≥
T

∑
t=0

Eqθ

[
log p(xxxt |zzzt ,vvvt)

]
−Eqθ

[
DKL [qθ(zzz0|xxx0)||p(zzz0)]

]
−Eqθ

[
DKL [qθ(vvv0|xxx0)||p(vvv0)]

]
−

T

∑
t=1

Eqθ

[
DKL [qθ(vvvt |zzzt−1,vvvt−1)||p(vvvt)]

] (7)

where the first term is the reconstruction objective, the second252

and third terms define the KL divergence on the initial distribu-253

tion of latent variables, and the last term regularizes the time254

evolution of the posterior.255

Recall that we assume that the observed spikes x̄xx are sam-256

ples from a Poisson process with underlying rates r̄rr. At each257

time step, the firing rates rrrt are predicted as a function of the258

latent variables zzzt and rrrt from the approximate posterior. The259

corresponding optimization objectives are defined as:260

LPoisson =−
T

∑
t=0

Eqθ

[
log

(
Poisson(xxxt |rrrt)

)]
LKL = Eqθ

[
DKL

(
qθ(zzz0|xxx0)||p(zzz0)

)]
+Eqθ

[
DKL

(
qθ(vvv0|xxx0)||p(vvv0)

)]
+

T

∑
t=1

Eqθ

[
DKL

(
qθ(vvvt |zzzt−1,vvvt−1)||p(vvvt)

)]
(8)



where LPoisson denotes the Poisson negative log-likelihood,261

and LKL represents the KL divergence regularization. In prac-262

tical implementation, the decoder q also incorporates the en-263

coder’s hidden states as part of its input. For brevity, we defer264

the details and provide a more thorough explanation when in-265

troducing the model architecture and referring to Fig. 1.266

Latent Langevin Posterior Flow267

To derive the time evolution of the posterior, we can decom-268

pose the underdamped Langevin equation into two steps:269

Deterministic Step:
dzzz
dt

= vvv,
dvvv
dt

=−∇zzzU(zzz)
m

Probabilistic Step:
dvvv
dt

=−γvvv+
√

2mγkbτηηη(t)
(9)

Here the deterministic step amounts to the Hamiltonian flow270

where the total energy is conserved, and the probabilistic step271

follows the stochastic Ornstein-Uhlenbeck process. Our goal272

is to derive the time evolution of joint posterior probability.273

Hamiltonian Flow. The deterministic step of Eq. (9) actually274

defines the Hamiltonian of the system:275

H (vvv,zzz) =
U(zzz,xxx)

m︸ ︷︷ ︸
Potential

+
1
2
||vvv||2︸ ︷︷ ︸

Kinetic

(10)

The total energy is conserved in the time evolution of the cou-276

pled variables. Discretizing over time leads to the joint update:277

[zzzt+ 1
2
,vvvt+ 1

2
] = f (zzzt ,vvvt) = [ fzzz, fvvv]

= [zzzt +
∂H
∂vvvt

∆t,vvvt −
∂H
∂zzzt

∆t]
(11)

where the subscript t denote the time index, ∆t represents the278

step size in physical time, and [ fzzzt , fvvvt ] denotes the above cou-279

pled transformation. The joint posterior q(zzzt+1/2,vvvt+1/2) obeys280

the normalizing-flow-like density evolution:281

logq(zzzt+ 1
2
,vvvt+ 1

2
) = logq(zzzt ,vvvt)+ log |det(I + JH ∆t)|−1 (12)

where JH is the Jacobian induced by the Hamiltonian. For282

infinitesimal steps ∆t, we have:283

det(I + JH dt) = det
[
I +

 ∂2H
∂zi∂v j

− ∂2H
∂zi∂z j

∂2H
∂vi∂z j

− ∂2H
∂vi∂z j

∆t
]

≈ 1+Tr

 ∂2H
∂zi∂v j

− ∂2H
∂zi∂z j

∂2H
∂vi∂z j

− ∂2H
∂vi∂z j

∆t ≈ 1

(13)

The deterministic conditional can thus be written as:284

q(zzzt+ 1
2
,vvvt+ 1

2
|zzzt ,vvvt)≈ δ

(
zzzt+ 1

2
− fzzz(zzzt ,vvvt),vvvt+ 1

2
− fvvv(zzzt ,vvvt)

)
(14)

The posterior conserves probability mass over time. Let285

q(zzzt+1|zzzt+1/2) denote a trivial Dirac δ-function. Marginalizing286

zzzt+1/2 out gives the conditional of zzzt+1:287

q(zzzt+1|zzzt ,vvvt) =
∫

q(zzzt+1|zzzt+ 1
2
)q(zzzt+ 1

2
|zzzt ,vvvt)dzzzt+ 1

2

=
∫

δ

(
zzzt+1 − zzzt+ 1

2

)
δ

(
zzzt+ 1

2
− fzzz(zzzt ,vvvt)

)
dzzzt+ 1

2

= δ

(
zzzt+1 − fzzz(zzzt ,vvvt)

) (15)

Ornstein-Uhlenbeck Process. The probabilistic step of288

Eq. (9) is given by the Ornstein–Uhlenbeck process which de-289

scribes a noisy relaxation process, whereby a particle is dis-290

turbed with noise η(t) and simultaneously relaxed to its mean291

position with friction coefficient γ:292

dvvv
dt

=−γvvv+
√

2mγkBτ η(t). (16)

Discretizing over timesteps, the Gaussian noise yields a293

Gaussian transition update as:294

q(vvvt+1|zzzt ,vvvt) =
∫

q(vvvt+1|vvvt+ 1
2
)q(vvvt+ 1

2
|zzzt ,vvvt)dvvvt+ 1

2

=
∫

N
(
(1− γ)vvvt+ 1

2
,2mγkBτI

)
δ

(
vvvt+ 1

2
− fvvv(zzzt ,vvvt)

)
dvvvt+ 1

2

= N
(
(1− γ) fvvv(zzzt ,vvvt),2mγkBτI

)
(17)

The re-parameterization trick (Kingma & Welling, 2013) is295

used to allow for differentiation through the Gaussian kernel.296

We alternate these two steps to compute the conditional up-297

date of the joint posterior q(zzzt+1,vvvt+1|zzzt ,vvvt).298

……

One-layer Transformer Decoder                           

RNN
Encoder

RNN
Encoder

RNN
Encoder

……

Langevin Eq. Langevin Eq.

Latent Variable and Hidden State Sequence

Figure 1: Workflow of our method: the RNN encoder takes the
spike data as input at every timestep and updates the hidden
states hhht , and the latent variables zzzt ,vvvt evolve in time accord-
ing to the Langevin equation. Finally, the Transformer decoder
predicts the firing rates from the entire sequence.

Architecture and Training Algorithm299

Fig. 1 displays our model architecture. A recurrent encoder300

GRU (Chung et al., 2014) is used to encode the input sequence301

to a set of hidden states ht = GRU(xt−1,ht−1). The initial con-302

ditions for the latent variables z0 & v0 are inferred from h0,303

and then evolve forward in time according to both the deter-304

ministic and stochastic steps. The RNN encoder is included305



Figure 2: Trial-average firing rates (top) and the corresponding spike trains (bottom) of some neurons of Lorenz system.

Table 1: Results on MC Maze and MC RTT with the sampling frequency of 20 ms.

Methods
MC-Maze MC-RTT

co-bps (↑) vel R2 (↑) psth R2 (↑) fp-bps (↑) co-bps (↑) vel R2 (↑) fp-bps (↑)

Smoothing (Yu et al., 2008) 0.2076 0.6111 -0.0005 – 0.1454 0.3875 –
GPFA (Yu et al., 2008) 0.2463 0.6613 0.5574 – 0.1769 0.5263 –

SLDS (Linderman et al., 2017) 0.2117 0.7944 0.4709 -0.1513 0.1662 0.5365 -0.0509
NDT (Ye & Pandarinath, 2021) 0.3597 0.8897 0.6172 0.2442 0.1643 0.6100 0.1200

AutoLFADS (Pandarinath et al., 2018b) 0.3554 0.8906 0.6002 0.2454 0.1976 0.6105 0.1241
MINT (Perkins et al., 2023) 0.3295 0.9005 0.7474 0.2076 0.2008 0.6547 0.1099

LangevinFlow 0.3641 0.8940 0.6801 0.2573 0.2010 0.6652 0.1389

Algorithm 1 Training algorithm of our Langevin flow.
Require: Recurrent encoder GRU, Transformer-based se-

quence decoder Transformer, linear mapping for latent
variables n, input spike sequence x̄xx, and posterior qθ.

1: repeat
2: Initial hidden states: hhh0 = GRU(xxx0)
3: Initial latent variables: [zzz0,vvv0] = n(hhh0)
4: Time step counter: i = 0
5: while i ≤ T −1 do
6: Update position (deterministic step): zzzi+1 = zzzi + vvvi
7: Update velocity (deterministic step):

vvvi+ 1
2
= vvvi −∇zzzU(zzzi)/m

8: Update velocity (probabilistic step):
vvvi+1 = (1− γ)vvvi+ 1

2
+
√

2mγkBτ ηηη(i)
9: Update hidden states: hhhi+1 = GRU(xxxi+1,hhhi)

10: Concatenate variable sequences:
z̄zz = [zzz0:i,zzzi+1], v̄vv = [vvv0:i,vvvi+1], h̄hh = [hhh0:i,hhhi+1]

11: Update time step counter: i = i+1
12: end while
13: Predict firing rates: r̄rr = Transformer(z̄zz, v̄vv, h̄hh)
14: Optimize the LPoisson and LKL.
15: until converged

to model the short-range dependencies of neural data. Af-306

ter encoding input spikes and performing latent Langevin flow,307

all hidden states and latent variables are combined through a308

single Transformer (Vaswani et al., 2017) layer to predict the309

firing rates of the sequence: r̄ = Transformer(z̄, v̄, h̄). We310

use a Transformer for decoding because it can capture long-311

range interactions over time and allows for a more globally in-312

formed prediction of firing rates. The parameters of the GRU,313

Transformer, linear readout, and potential are then optimized314

to maximize the ELBO in Eq. (6). We summarize the training315

algorithm in Alg. 1.316

Experiments317

This section presents the experimental setup and the results318

of our method. We start with the setup of the experiments, dis-319

cuss the results on the toy dataset of synthetic Lorenz attrac-320

tor, and finally present the extensive evaluation of the Neural321

Latents Benchmark.322

Setup323

Baselines. On the synthetic Lorenz attractor dataset, we324

mainly compare with AutoLFADS (Pandarinath et al., 2018a)325

and NDT (Ye & Pandarinath, 2021), which are dedicated RNN326

and Transformer architectures designed for neural population327

modeling. On NLB, we further compare with a wide range of328



Table 2: Results on Area2 Bump and DMFC RSG with the sampling frequency of 20 ms.

Methods
Area2-Bump DMFC-RSG

co-bps (↑) vel R2 (↑) psth R2 (↑) fp-bps (↑) co-bps (↑) tp corr (↓) psth R2 (↑) fp-bps (↑)

Smoothing (Yu et al., 2008) 0.1529 0.5319 -0.1840 – 0.1183 -0.5115 0.2830 –
GPFA (Yu et al., 2008) 0.1791 0.6094 0.5998 – 0.1378 -0.5506 0.3180 –

SLDS (Linderman et al., 2017) 0.1816 0.6967 0.5200 0.0132 0.1575 -0.5997 0.5470 0.0374
NDT (Ye & Pandarinath, 2021) 0.2624 0.8623 0.6078 0.1459 0.1757 -0.6928 0.5477 0.1649

AutoLFADS (Pandarinath et al., 2018b) 0.2542 0.8565 0.6552 0.1423 0.1871 -0.7819 0.5903 0.1791
MINT (Perkins et al., 2023) 0.2718 0.8803 0.9049 0.1489 0.1824 -0.6995 0.7014 0.1647

LangevinFlow 0.2881 0.8810 0.7641 0.1647 0.1904 -0.5981 0.6079 0.1945

Figure 3: Spatiotemporal waves induced by our LangevinFlow in different views on MC Maze. Here each group denotes an
independent set of convolution channels.

competitive baselines on the public leaderboard 1.329

Implementation Details. The Transformer decoder consists330

of only 1 self-attention layer with 4 attention heads. An-331

other linear layer is used for reading out firing rates. For the332

Langevin equation, the mass m is set to an identity matrix, and333

both Boltzman constant kB and temperature τ are set 1. The334

damping ratio γ is tuned for specific datasets but stays in the335

range of [0.55,0.8]. For the potential, the latent code is first336

divided into 4 groups (i.e., independent convolution channels337

), and we use a one-dimensional convolution layer of kernel338

size 7 with padding 3 and stride 1 for each group. We adopt a339

hyper-parameter λ to tune the strength of the KL penalty and340

add a scheduler to gradually increase the value so that the op-341

timization does not quickly set the KL divergence to 0. As the342

observed spikes are assumed to be from a low-dimensional343

subspace, we use coordinated dropout (Keshtkaran & Pandar-344

inath, 2019) to randomly drop input samples during the train-345

ing, which enforces the model to learn the underlying latent346

structure shared across neurons.347

Synthetic Lorenz Attractor348

The Lorenz attractor is a 3D dynamical system where the dy-349

namics are governed by three coupled non-linear equations:350

ẏ1 = σ(y2 − y3),

ẏ2 = y1(ρ− y3)y2,

ẏ3 = y1y2 −βy3

(18)

1https://eval.ai/web/challenges/challenge-
page/1256/leaderboard/

where σ,ρ,β are hyper-parameters. In line with Ye & Pan-351

darinath (2021), we first simulate the 3D Lorenz attractor and352

then project the 3D states into a higher dimensionality using a353

random linear transform to form firing rates for a population of354

synthetic neurons. The spikes of each trial are sampled from355

the Poisson distribution with these firing rates. The evaluat-356

ing methods are expected to infer the true firing rates of the357

Lorenz system from the synthetic spiking activity alone.358

Table 3: R2 of the firing rates on Lorenz Attractor.

AutoLFADS NDT LangevinFlow

R2(↑) 0.921±0.005 0.934±0.004 0.944±0.003

Table 3 presents the results of R2 correlation between the359

predicted firing rates and the ground truth. Our LangevinFlow360

outperforms the baselines and achieves a higher correlation361

score in predicting the firing rates, indicating that our model362

more accurately captures the underlying dynamical structure363

of the synthetic neural data. Fig. 2 compares the predicted364

trial-averaged firing rates and of several randomly selected365

neurons alongside their ground truth counterparts, as well as366

the corresponding spike trains. Our method closely recovers367

the general shape and amplitude of the firing rate curves, and368

also accurately reflects the temporal structure of spike trains.369

Neural Latent Benchmark370

The NLB (Pei et al., 2021) is a benchmark designed for eval-371

uating unsupervised approaches that model neural popula-372



Table 4: Results on MC Maze and MC RTT with the sampling frequency of 5 ms.

Methods
MC-Maze MC-RTT

co-bps (↑) vel R2 (↑) psth R2 (↑) fp-bps (↑) co-bps (↑) vel R2 (↑) fp-bps (↑)

Smoothing (Yu et al., 2008) 0.2109 0.6238 0.1853 – 0.1468 0.4142 –
GPFA (Yu et al., 2008) 0.1872 0.6399 0.5150 – 0.1548 0.5339 –

SLDS (Linderman et al., 2017) 0.2249 0.7947 0.5330 -0.1513 0.1649 0.5206 0.0620
NDT (Ye & Pandarinath, 2021) 0.3229 0.8862 0.5308 0.2206 0.1749 0.5656 0.0970

AutoLFADS (Pandarinath et al., 2018b) 0.3364 0.9097 0.6360 0.2349 0.1868 0.6167 0.1213
MINT (Perkins et al., 2023) 0.3304 0.9121 0.7496 0.2076 0.2014 0.6559 0.1099

LangevinFlow 0.3624 0.7867 0.5515 0.2556 0.1900 0.4748 0.1300

Table 5: Results on Area2 Bump and DMFC RSG with the sampling frequency of 5 ms.

Methods
Area2-Bump DMFC-RSG

co-bps (↑) vel R2 (↑) psth R2 (↑) fp-bps (↑) co-bps (↑) tp corr (↓) psth R2 (↑) fp-bps (↑)

Smoothing (Yu et al., 2008) 0.1544 0.5736 0.2084 – 0.1202 -0.5139 0.2993 –
GPFA (Yu et al., 2008) 0.1680 0.5975 0.5289 – 0.1176 -0.3763 0.2142 –

SLDS (Linderman et al., 2017) 0.1960 0.7385 0.5740 0.0242 0.1243 -0.5412 0.3372 -0.0418
NDT (Ye & Pandarinath, 2021) 0.2623 0.8672 0.6619 0.1184 0.1720 -0.5624 0.4377 0.1404

AutoLFADS (Pandarinath et al., 2018b) 0.2569 0.8492 0.6318 0.1505 0.1829 -0.8248 0.6359 0.1844
MINT (Perkins et al., 2023) 0.2735 0.8877 0.9135 0.1483 0.1821 -0.6929 0.7013 0.1650

LangevinFlow 0.2772 0.8580 0.7567 0.1526 0.1841 -0.5466 0.6092 0.1689

Figure 4: Kinematics (hand velocities and trajectories) of the
ground truth and predicted by our method on Area2 Bump.

tion activities. This benchmark provides four curated neuro-373

physiological datasets from monkeys that span motor, sen-374

sory, and cognitive brain regions, with behaviors that vary from375

pre-planned, stereotyped movements to those in which sen-376

sory input must be dynamically integrated. The primary metric377

co-smoothing (Macke et al., 2011) evaluates the normalized378

log-likelihood of held-out neuronal activity prediction, while the379

secondary metrics can include behavior decoding accuracy,380

match to PSTH, or log-likelihood of forward predictions. Two381

sampling frequencies (5ms and 20ms) are pre-defined to ob-382

tain datasets with different sequence lengths.383

20 ms Results. In Table 1 and 2, we see that our Langev-384

inFlow achieves state of the art on the likelihood of held-out385

neurons (co-smoothing bits per spike), as well as forward pre-386

diction bits per spike. The model also compares very favorably387

in terms of the behavioral metrics such as hand-velocity re-388

gression. The model is not state of the art on PSTH R2, which389

may be expected given the known trade-off between the co-390

bps metric and the performance on trial-averaged PSTH cor-391

relation metric. The overall performance across multiple met-392

rics underscores its robustness in capturing neural dynamics.393

5 ms Results. Table 4 and 5 report the evaluation results394

on NLB with the sampling frequency of 5 ms. The results at395

this higher temporal resolution are very coherent with those of396

20 ms. Our LangevinFlow maintains impressive performance,397

achieving strong likelihood scores on held-out neurons and398

forward predictions on most datasets. This consistency across399

different sampling frequencies confirms the model’s ability to400

adapt to varying temporal granularities, which is critical for401

capturing the fine-scale dynamics present in neural data.402

Spatiotemporal Wave Dynamics. Fig. 3 displays the403

smooth spatiotemporal waves induced by our coupled oscil-404

lator potential. We can see that the latent variables in differ-405

ent convolution groups exhibit clear but distinct wave patterns,406

reminiscent of traveling waves observed in cortical activity (Er-407

mentrout & Kleinfeld, 2001; Muller et al., 2014). Such wave408

dynamics are thought to play several key computational roles409

in neuroscience. For example, traveling waves have been410

proposed to facilitate the integration of information over dis-411

tributed neural populations, serving as a mechanism for coor-412

dinating activity across different brain regions (Buzsaki, 2006;413

Miller et al., 2009; Muller et al., 2018). They can help synchro-414

nize the timing of neural firing, thereby enhancing signal prop-415

agation and ensuring that information is efficiently routed and416

integrated. Moreover, wave dynamics may support processes417

such as working memory, decision-making, preditive decod-418

ing, and sensorimotor integration (Sato et al., 2012; Engel et419



al., 2013; Besserve et al., 2015; Alamia & VanRullen, 2019;420

Friston, 2019). In our model, the emergence of these wave421

patterns not only reflects the inherent oscillatory dynamics of422

the neural data, but also suggests that our coupled oscillator423

potential may be capturing similar computational principles,424

contributing to the robust performance of our approach.425

Kinematics Visualization. Fig. 4 illustrates the time evolu-426

tion of key kinematic variables on the Area2 Bump dataset, in-427

cluding hand X and Y velocities, as well as the overall hand428

trajectories. The high behavior decoding accuracy of our429

model is evident here: linear regression models fitted on pre-430

dicted firing rates yield kinematic outputs that closely match431

the ground truth. These results validate the accuracy of the432

neural activity reconstruction, demonstrating the practical util-433

ity of our approach in decoding behaviorally relevant signals.434

Table 6: Results of ablation studies with the sampling fre-
quency of 20 ms on MC Maze (top) and Area2 Bump (bottom).

co-bps (↑) vel R2 (↑) psth R2 (↑) fp-bps (↑)

LangevinFlow 0.3641 0.8940 0.6801 0.2573

Baseline 1 0.3572 0.8893 0.6683 0.2419
Baseline 2 0.3328 0.8579 0.6812 0.2549
Baseline 3 0.3441 0.8109 0.4684 0.2506
Baseline 4 0.3612 0.9005 0.6743 0.2469
Baseline 5 0.3586 0.8932 0.6881 0.2351

co-bps (↑) vel R2 (↑) psth R2 (↑) fp-bps (↑)

LangevinFlow 0.2881 0.8810 0.7641 0.1647

Baseline 1 0.2795 0.8725 0.7386 0.1549
Baseline 2 0.2679 0.8641 0.7013 0.1488
Baseline 3 0.2838 0.8552 0.7165 0.1498
Baseline 4 0.2800 0.8739 0.7803 0.1631
Baseline 5 0.2843 0.8614 0.6994 0.1596

Ablation Studies. Finally, we designed a number of base-435

lines and performed ablations to understand the role each436

component of our LangevinFlow plays on overall performance.437

Specifically, we considered the following model variants:438

• Baseline 1: a linear decoder in place of the Transformer.439

• Baseline 2: a linear encoder with no hidden states.440

• Baseline 3: a model without Langevin dynamics relying441

solely on hidden state dynamics.442

• Baseline 4: a variant in which the oscillator potential443

also couples latent variables to input spikes. Explicitly:444

U(zzz,xxx) = zzzT WWW zzz
||WWW zzz||2 zzz+ zzzTWWW xxxxxx.445

• Baseline 5: a version using first-order dynamics instead of446

Langevin dynamics. Explicitly: zzzt+1 = zzzt −∇zzztU(zzzt).447

Table 6 shows the results on MC Maze and Area2 Bump. In448

Baseline 1, we replaced the Transformer decoder with a linear449

decoder. Compared to LangevinFlow, this variant has slightly450

lower co-smoothing (co-bps) and forward prediction (fp-bps)451

scores, which indicate the importance of the Transformer in452

capturing global interactions across the entire latent sequence453

and in refining firing rate predictions. The global attention454

mechanism appears to integrate information more effectively455

than a simpler linear mapping.456

Baseline 2 removes the hidden states from the encoder by457

replacing the recurrent network with a linear encoder. This458

modification leads to a noticeable drop in performance, par-459

ticularly in the co-bps and velocity R2 scores. This suggests460

that the local temporal dependencies captured by recurrent461

hidden states are essential for modeling the short-range dy-462

namics present in the neural spike activity.463

Baseline 3 completely omits Langevin dynamics and relies464

solely on hidden state dynamics. This modification results in a465

marked performance drop, especially evident in the significant466

drop in PSTH R2 on MC Maze. This decline emphasizes the467

crucial role of incorporating Langevin dynamics with a learned468

potential, which represents intrinsic autonomous processes469

and facilitates the emergence of oscillations. The Langevin470

dynamics are thus expected to help the model capture the un-471

derlying dynamical system more faithfully.472

In Baseline 4, we augment the oscillator potential by incor-473

porating the input spiking signal. This modification does not474

provide a substantial benefit to the performance and in some475

cases slightly underperforms the original model. This result476

suggests that the learned potential function in its original for-477

mulation is already capturing the necessary dependencies.478

Finally, Baseline 5 substitutes the second-order Langevin479

dynamics with a simpler first-order update rule. The observed480

performance drop in several metrics confirms that the second-481

order Langevin dynamics – featuring terms for inertia and482

damping – is more effective in modeling the neural dynamics.483

The richer dynamics afforded by the second-order formulation484

appear to better capture both the smooth evolution and the485

inherent variability of the underlying latent factors.486

Conclusions487

This paper presents LangevinFlow, a sequential variational488

autoencoder whose latent dynamics are governed by un-489

derdamped Langevin equations. By embedding physically490

grounded stochastic processes and coupled oscillatory be-491

havior into the latent space, our framework offers a power-492

ful avenue for modeling complex neural population activity.493

We anticipate that these ideas will inspire further exploration494

of physics-informed inductive biases in neural latent variable495

modeling, paving the way for even richer and more inter-496

pretable dynamical systems approaches.497

Limitations and Future Work. While our framework was498

shown to yield very promising results, our proposed Langevin499

dynamics with the present potential function operate in a500

largely autonomous manner. This formulation seemed to501

work better than an input-dependent potential in ablation stud-502

ies; however, adding more input dependence to this potential503

should intuitively help Langevin dynamics better account for504

external influences. In future work, exploring more complex505



input-dependent potential functions could likely yield signifi-506

cant benefits and are a promising new avenue for research507

uniquely enabled by our LangevinFlow framework.508
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