

Langevin Flows for Modeling Neural Latent Dynamics

Yue Song¹, T. Anderson Keller², Yisong Yue¹, Pietro Perona¹, and Max Welling³

¹ Caltech, Vision Lab, Pasadena, CA

² The Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, MA

³ University of Amsterdam, Institute for Informatics, Amsterdam, The Netherlands

Abstract

Neural populations exhibit latent dynamical structures that drive time-evolving spiking activities, motivating the search for models that capture both intrinsic network dynamics and external unobserved influences. In this work, we introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation. Our approach incorporates physical priors — such as inertia, damping, a learned potential function, and stochastic forces — to represent both autonomous and non-autonomous processes in neural systems. Crucially, the potential function is parameterized as a network of locally coupled oscillators, biasing the model toward oscillatory and flow-like behaviors observed in biological neural populations. Our model features a recurrent encoder, a one-layer Transformer decoder, and Langevin dynamics in the latent space. Empirically, our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor, closely matching ground-truth firing rates. On the Neural Latents Benchmark (NLB), the model achieves superior held-out neuron likelihoods (bits per spike) and forward prediction accuracy across four challenging datasets. It also matches or surpasses alternative methods in decoding behavioral metrics such as hand velocity. Overall, this work introduces a flexible, physics-inspired, high-performing framework for modeling complex neural population dynamics and their unobserved influences.

Keywords: neural population dynamics; variational auto-encoders; latent variable models

Introduction

Neural populations have been demonstrated to possess an underlying dynamical structure which drives the time evolution of population spiking activities (Shenoy et al., 2013; Vyas et al., 2020). Uncovering these underlying latent ‘factors’ governing neural variability has become a goal of increasing interest in the neuroscience community. Such factors have been shown to be predictive of held-out neurons, future neural dynamics, and even behavior (Gallego et al., 2017). Recent works in this field have emphasized the importance of being able to model both internal deterministic dynamics, and potentially unobserved external influences (such as input from sensory areas, or stochastic influences from other unmeasured brain regions). In established frameworks such as Au-toLFADS (Pandarinath et al., 2018a), such influences have

been captured by separately inferred control variables which modulate the dynamics of the inferred latent variables. Separate work has further modeled neural activity and particularly decision-making, through the use of learned potential functions that shape attractor-like population dynamics (Genkin et al., 2023). Their work revealed a single decision variable embedded in a higher-dimensional population code, where heterogeneous neuronal firing could be explained by diverse tuning to the same latent process. Notably, the notion of an attractor mechanism aligns with the concept of a potential landscape, wherein neural trajectories evolve within an energy basin that facilitates stable or quasi-stable states. In parallel, recent developments in Transformer architectures (Ye & Pandarinath, 2021; Ye et al., 2024) offer a promising avenue for neural data modeling by capturing long-range dependencies and global context across entire sequences — complementing traditional methods that focus on local temporal interactions.

Drawing from physics, the Langevin equation is a stochastic differential equation which describes a system driven by both deterministic forces and stochastic environmental influences. We propose that the Langevin equation naturally integrates the key ingredients highlighted in prior studies: intrinsic (autonomous) dynamics, unobserved external or stochastic influences, and a potential function to shape attractor-like behavior. Specifically, we introduce a novel latent variable model for neural data that leverages underdamped Langevin dynamics to describe the time evolution of latent factors. This model includes terms representing inertia, damping, a potential function, and stochastic forces arising from both internal and external sources. Crucially, the potential function in our model is parameterized as a network of locally coupled oscillators, inducing a bias towards oscillatory and flow-like dynamics previously observed in neural latent activity (Churchland et al., 2012). This formulation captures the autonomous dynamics inherent to neural systems, providing a principled way to model both the stability and variability observed in neural responses. The oscillatory potential function also mirrors the emergence of cortical rhythms and traveling waves that have been linked to critical computational roles such as information integration, synchronization, and flexible sensorimotor processing (Ermentrout & Kleinfeld, 2001; Buzsaki, 2006).

We train the model as a sequential Variational Auto-Encoder (VAE) (Kingma & Welling, 2013) with a recurrent encoder and a small one-layer transformer serving as the generative map from latent variables to neural spike rates. The recurrent encoder effectively captures local temporal dependencies in the neural data, while the Transformer decoder is

94 employed to harness global context. By attending to the en-¹⁴⁸
95 tire latent sequence, the Transformer refines firing rate pre-¹⁴⁹
96 dictions through integrating information from all timesteps, en-¹⁵⁰
97 suring that long-range interactions and subtle dynamical pat-¹⁵¹
98 terns are well captured. This combination allows the model¹⁵²
99 to capture complex temporal patterns and spatial correlations¹⁵³
100 within the neural population data. Empirically, we first show¹⁵⁴
101 the efficacy of our LangevinFlow on synthetic neural popu-¹⁵⁵
102 lation data generated from a Lorenz attractor system, where¹⁵⁶
103 our method is able to predict the firing rates closer to the¹⁵⁷
104 ground truth than existing competitive baselines. We then¹⁵⁸
105 demonstrate state-of-the-art performance on the Neural La-¹⁵⁹
106 tents Benchmark (NLB) (Pei et al., 2021), achieving superior¹⁶⁰
107 results in modeling held-out neuron likelihoods (co-smoothing,¹⁶¹
108 bits per spike) and forward prediction accuracy across all¹⁶²
109 four benchmark datasets (MC_Maze, MC_RTT, Area2_Bump, and¹⁶³
110 DMFC_RSG), sampled at both 5 and 20 ms. The model also¹⁶⁴
111 performs comparably or better in decoding behavioral metrics¹⁶⁵
112 such as hand velocity. Notably, the time evolution of latent¹⁶⁶
113 representations reveals smooth spatiotemporal wave dynam-¹⁶⁷
114 ics, which is reminiscent of traveling waves observed in corti-¹⁶⁸
115 cal activity (Muller et al., 2018). This suggests that our cou-¹⁶⁹
116 pled oscillator potential might capture key computational prin-¹⁷⁰
117 ciples underlying neural information integration. Ultimately,¹⁷¹
118 we present this Langevin dynamics framework for neural data¹⁷²
119 modeling, which incorporates inductive biases from physical¹⁷³
120 principles and accounts for unobserved influences through its¹⁷⁴
121 inherent stochastic dynamics. This general framework also al-¹⁷⁵
122 lows for the flexible design of potential functions, opening up¹⁷⁶
123 new doors for experimentation with latent dynamical systems.¹⁷⁷

124 Related Work

125 Neural population modeling has emerged as a key area in¹⁸¹
126 computational neuroscience, primarily driven by technologi-¹⁸²
127 cal advances that now allow us to simultaneously record from¹⁸³
128 hundreds or even thousands of neurons (Stevenson & Kord-¹⁸⁴
129 ingle, 2011). Rather than focusing on individual neurons in iso-¹⁸⁵
130 lation, population-level analyses seek to uncover the collec-¹⁸⁶
131 tive dynamics that shape brain function. These methods aim¹⁸⁷
132 to capture moment-to-moment variability (Churchland et al.,¹⁸⁸
133 2006; Ecker et al., 2010), shed light on network-wide interac-¹⁸⁹
134 tions (Cohen & Kohn, 2011; Saxena & Cunningham, 2019),¹⁹⁰
135 and relate neural activity to behavior in real time (Gallego et¹⁹¹
136 al., 2018, 2020; Dabagia et al., 2023) — all of which are cen-¹⁹²
137 tral goals for both fundamental neuroscience research and¹⁹³
138 applied domains such as brain-computer interfaces (Sussillo,¹⁹³
139 Stavisky, et al., 2016; Karpowicz et al., 2022).¹⁹⁴

140 Early approaches to analyzing population neural record-¹⁹⁵
141 ings primarily focused on relatively simple statistical or latent-¹⁹⁶
142 variable methods. Among the most widely used are linear and¹⁹⁷
143 switching linear dynamical systems (LDS and SLDS) (Macke
144 et al., 2011; Kao et al., 2015; Gao et al., 2016; Linderman
145 et al., 2017), which model neural population activity via lin-¹⁹⁸
146 ear state transitions (or piecewise linear segments) and emis-¹⁹⁹
147 sions. Gaussian process-based approaches (Yu et al., 2008;²⁰⁰

Zhao & Park, 2017; Wu et al., 2017; Duncker & Sahani, 2018)
148 impose smoothness assumptions on latent factors and allow
149 flexible, nonparametric modeling. However, the need for trial-
150 averaging and the limited expressiveness of linear or Gaus-
151 sian process latent variables can miss richer structures in-
152 herent in neural data, particularly during dynamic and non-
153 linear brain computations. To overcome these limitations, re-
154 current neural network (RNN)-based methods have emerged
155 as powerful tools to capture the non-linear dynamics (Zhao
156 & Park, 2016; Duncker et al., 2019). One seminal work in
157 this space is Latent Factor Analysis via Dynamical Systems
158 (LFADS) (Sussillo, Jozefowicz, et al., 2016), which utilizes
159 RNNs to model autonomous dynamics in single trials of spik-
160 ing activity. LFADS infers latent trajectories that explain ob-
161 served neural variability and has demonstrated impressive
162 gains over traditional baselines. Subsequent work such as
163 AutoLFADS (Pandarinath et al., 2018a) refined this framework
164 by allowing the model to separately infer putative “control” in-
165 puts, thereby accounting for unobserved external influences
166 (e.g., sensory input or cognitive factors) that modulate neu-
167 ral dynamics. Following the advances in machine learning,
168 recent work has begun exploring Transformer-based architec-
169 tures for neural data. Transformers process input tokens in
170 parallel, enabling potentially faster training and inference com-
171 pared to sequential RNNs. Their success in large-scale lan-
172 guage tasks has motivated adaptations such as the Neural
173 Data Transformer (NDT) (Ye & Pandarinath, 2021) which mod-
174 ifies the Transformer encoder for neural spiking data, the im-
175 proved version NDT2 (Ye et al., 2024) which further improves
176 scaling across heterogeneous contexts, and POYO (Azabou
177 et al., 2024) which leverages both cross-attention and Per-
178 ceiverIO (Jaegle et al., 2022) to construct a latent tokenization
179 method for neural population activities.¹⁸⁰

181 The most relevant methods to our work are AutoL-
182 FADS (Pandarinath et al., 2018a) and NDT (Ye & Pandari-
183 nath, 2021). AutoLFADS and LFADS employ RNNs as the
184 encoder and decoder networks, and the temporal dynamics
185 are given by the hidden states, while NDT uses Transformers
186 to encode the spiking data and additionally adopts masked
187 modeling methodology to learn the context information. By
188 contrast, our LangevinFlow employs a recurrent encoder, an
189 oscillatory potential to enforce Langevin dynamics to the time
190 evolution of latent variables, and a single Transformer layer to
191 decode the entire variable sequence to firing rates.

192 Methodology

193 In this section, we first introduce the underdamped Langevin
194 equation, then present the sequential VAE framework, fol-
195 lowed by the derivation and analysis of how Langevin dynam-
196 ics evolve in the posterior flow of latent variables. Finally, we
197 discuss the model architecture and the training algorithm.

198 Underdamped Langevin Equation

199 We seek to build a latent variable model which integrates
200 the desired beneficial inductive biases (intrinsic dynamics,
201 stochastic influences, and an attractor-like potential function)

202 in a principled manner. From the physics literature, a canonical abstract model of a system interacting with its environment
203 is the Langevin equation:
204

$$\frac{\partial \mathbf{z}}{\partial t} = \mathbf{v}, \quad m \frac{\partial \mathbf{v}}{\partial t} = F(\mathbf{z}) - m\gamma\mathbf{v} + \sqrt{2m\gamma k_B\tau}\mathbf{\eta}(t) \quad (1)$$

205 where $\mathbf{z}(t)$ denotes the (d -dimensional) state of the system at
206 time t , \mathbf{v} represents the associated velocity, m is a diagonal
207 matrix of masses, F is the set of internal forces acting on the
208 system (as a function of its state), γ is the damping (or friction)
209 coefficient, k_B is the Boltzmann constant, τ is the temperature,
210 and $\mathbf{\eta}(t)$ represents high-dimensional Gaussian white noise
211 modeling the thermal fluctuation.

212 One method for defining the force field F is in terms of
213 the gradient of a scalar potential function $F(\mathbf{z}) = -\nabla_{\mathbf{z}}U(\mathbf{z})$
214 This formulation allows for the description of many well-known
215 physical systems which have intrinsic dynamics. One abstraction
216 of neural dynamics is that of a network of locally coupled
217 oscillators (Diamant & Bortoff, 1969; Ermentrout & Kopell,
218 1984), which admits a particularly simple potential function:

$$U(\mathbf{z}) = \mathbf{z}^T \frac{\mathbf{W}_z}{\|\mathbf{W}_z\|_2} \mathbf{z} \quad (2)$$

219 where $\mathbf{W}_z \in \mathbb{R}^{d \times d}$ is the symmetric matrix of coupling coefficients
220 between the individual oscillators. For a locally coupled
221 system, this matrix reduces to a convolution operator in the
222 Toeplitz form. Driven by this coupled oscillator potential, the
223 time evolution of the latent state vector \mathbf{z} will have smooth spatiotemporal
224 oscillatory dynamics (see Fig. 3).

225 Sequential Variational Auto-Encoder

226 To leverage the Langevin equation in a latent variable model of
227 neural data, we assert that the sequence of observed spikes
228 $\bar{\mathbf{x}}$ is Poisson distributed according to the firing rate $\bar{\mathbf{r}}$:
251

$$p(\bar{\mathbf{x}}|\bar{\mathbf{r}}) = \sum_{t=0}^T \text{Poisson}(\mathbf{x}_t|\mathbf{r}_t) \quad (3)$$

229 The firing rate is predicted by a decoder which takes as input
230 the latent state variables, detailed later. For the input sequence
231 $\bar{\mathbf{x}}$, latent samples $\bar{\mathbf{z}}$, and sample velocities $\bar{\mathbf{v}}$, we further assert the following factorization of their joint distribution:
252

$$\begin{aligned} p(\bar{\mathbf{x}}, \bar{\mathbf{z}}, \bar{\mathbf{v}}) &= p(\mathbf{v}_0)p(\mathbf{z}_0) \prod_{t=1}^T p(\mathbf{v}_t)p(\mathbf{z}_t) \prod_{t=0}^T p(\mathbf{x}_t|\mathbf{z}_t, \mathbf{v}_t) \\ &= p(\mathbf{v}_0)p(\mathbf{z}_0) \prod_{t=1}^T p(\mathbf{v}_t) \delta(\mathbf{z}_t - f_z(\mathbf{z}_{t-1}, \mathbf{v}_{t-1})) \prod_{t=0}^T p(\mathbf{x}_t|\mathbf{z}_t, \mathbf{v}_t) \end{aligned} \quad (4)$$

233 where $\delta(\cdot)$ denotes the Dirac δ -function, and f_z denotes
234 the coupled Hamiltonian update which is introduced later in
235 Eq. (11). Since \mathbf{z}_t and \mathbf{v}_t are coupled, the update to \mathbf{z} is
236 deterministic. We thus only define \mathbf{z}_0 and use δ -functions to represent
237 the later deterministic transformations. Here $p(\mathbf{z}_0)$ and
238 $p(\mathbf{v}_t)$ are both standard Normal distributions, and $p(\mathbf{x}_t|\mathbf{z}_t, \mathbf{v}_t)$
239 defines the mapping from latents to observations.
260

We employ the framework of Variational Autoencoders (VAEs) (Kingma & Welling, 2013), extended to sequential data, to perform inference over latent variables in this generative model. The goal of learning is to optimize the parameters of the following set of approximate posterior distributions:

$$\begin{aligned} q_{\theta}(\bar{\mathbf{z}}, \bar{\mathbf{v}}|\bar{\mathbf{x}}) &= q_{\theta}(\mathbf{z}_0, \mathbf{v}_0|\mathbf{x}_0)q(\mathbf{z}_{1:T}, \mathbf{v}_{1:T}|\mathbf{z}_0, \mathbf{v}_0) \\ &= q(\mathbf{z}_0|\mathbf{x}_0)q(\mathbf{v}_0|\mathbf{x}_0) \prod_{t=1}^T q(\mathbf{z}_t, \mathbf{v}_t|\mathbf{z}_{t-1}, \mathbf{v}_{t-1}) \\ &= q(\mathbf{z}_0|\mathbf{x}_0)q(\mathbf{v}_0|\mathbf{x}_0) \prod_{t=1}^T q(\mathbf{z}_t|\mathbf{z}_{t-1}, \mathbf{v}_{t-1})q(\mathbf{v}_t|\mathbf{z}_{t-1}, \mathbf{v}_{t-1}) \\ &= q(\mathbf{z}_0|\mathbf{x}_0)q(\mathbf{v}_0|\mathbf{x}_0) \prod_{t=1}^T \delta(\mathbf{z}_t - f_z(\mathbf{z}_{t-1}, \mathbf{v}_{t-1}))q(\mathbf{v}_t|\mathbf{z}_{t-1}, \mathbf{v}_{t-1}) \end{aligned} \quad (5)$$

where $q(\mathbf{z}_t|\mathbf{z}_{t-1}, \mathbf{v}_{t-1})$ and $q(\mathbf{v}_t|\mathbf{z}_{t-1}, \mathbf{v}_{t-1})$ are the successive conditionals for updating \mathbf{z}_t and \mathbf{v}_t at each timestep, respectively. Since the joint update of \mathbf{z}_t and \mathbf{v}_t is chosen to be autonomous, we omit later \mathbf{x}_t for simplifying above posterior. We derive the lower bound to model evidence (ELBO) as:

$$\begin{aligned} \log p(\bar{\mathbf{x}}) &= \mathbb{E}_{q_{\theta}(\bar{\mathbf{z}}, \bar{\mathbf{v}}|\bar{\mathbf{x}})} \left[\log \frac{p(\bar{\mathbf{x}}, \bar{\mathbf{z}}, \bar{\mathbf{v}})}{q(\bar{\mathbf{z}}, \bar{\mathbf{v}}|\bar{\mathbf{x}})} \frac{q(\bar{\mathbf{z}}, \bar{\mathbf{v}}|\bar{\mathbf{x}})}{p(\bar{\mathbf{z}}, \bar{\mathbf{v}}|\bar{\mathbf{x}})} \right] \\ &\geq \mathbb{E}_{q_{\theta}(\bar{\mathbf{z}}, \bar{\mathbf{v}}|\bar{\mathbf{x}})} \left[\log \frac{p(\bar{\mathbf{x}}, \bar{\mathbf{z}}, \bar{\mathbf{v}})}{q(\bar{\mathbf{z}}, \bar{\mathbf{v}}|\bar{\mathbf{x}})} \right] \\ &= \mathbb{E}_{q_{\theta}(\bar{\mathbf{z}}, \bar{\mathbf{v}}|\bar{\mathbf{x}})} \left[\log \frac{p(\bar{\mathbf{x}}, \bar{\mathbf{v}}, \mathbf{z}_0|\mathbf{z}_{1:T})}{q(\mathbf{z}_0, \bar{\mathbf{v}}|\bar{\mathbf{x}}, \mathbf{z}_{1:T})} \frac{p(\mathbf{z}_{1:T})}{q(\mathbf{z}_{1:T}|\mathbf{z}_0, \mathbf{v}_{0:T-1})} \right] \\ &= \mathbb{E}_{q_{\theta}(\bar{\mathbf{z}}, \bar{\mathbf{v}}|\bar{\mathbf{x}})} \left[\log \frac{p(\bar{\mathbf{x}}, \bar{\mathbf{v}}, \mathbf{z}_0|\mathbf{z}_{1:T}) \prod_{t=1}^T \delta(\mathbf{z}_t - f_z(\mathbf{z}_{t-1}, \mathbf{v}_{t-1}))}{q(\mathbf{z}_0, \bar{\mathbf{v}}|\bar{\mathbf{x}}, \mathbf{z}_{1:T}) \prod_{t=1}^T \delta(\mathbf{z}_t - f_z(\mathbf{z}_{t-1}, \mathbf{v}_{t-1}))} \right] \\ &= \mathbb{E}_{q_{\theta}(\bar{\mathbf{z}}, \bar{\mathbf{v}}|\bar{\mathbf{x}})} \left[\log \frac{p(\bar{\mathbf{x}}|\bar{\mathbf{v}}, \bar{\mathbf{z}})p(\bar{\mathbf{v}})p(\mathbf{z}_0)}{q(\mathbf{z}_0)q(\bar{\mathbf{v}}|\bar{\mathbf{x}}, \bar{\mathbf{z}})} \right] \\ &= \mathbb{E}_{q_{\theta}(\bar{\mathbf{z}}, \bar{\mathbf{v}}|\bar{\mathbf{x}})} [\log p(\bar{\mathbf{x}}|\bar{\mathbf{v}}, \bar{\mathbf{z}})] + \mathbb{E}_{q_{\theta}(\bar{\mathbf{z}}, \bar{\mathbf{v}}|\bar{\mathbf{x}})} \left[\log \frac{p(\mathbf{z}_0)}{q(\mathbf{z}_0)} \frac{p(\bar{\mathbf{v}})}{q(\bar{\mathbf{v}}|\bar{\mathbf{x}}, \bar{\mathbf{z}})} \right] \end{aligned} \quad (6)$$

Factorizing the joint distribution over timesteps, we can further re-write the above ELBO as:

$$\begin{aligned} \log p(\bar{\mathbf{x}}) &\geq \sum_{t=0}^T \mathbb{E}_{q_{\theta}} [\log p(\mathbf{x}_t|\mathbf{z}_t, \mathbf{v}_t)] \\ &\quad - \mathbb{E}_{q_{\theta}} [\text{D}_{\text{KL}}[q_{\theta}(\mathbf{z}_0|\mathbf{x}_0) || p(\mathbf{z}_0)]] - \mathbb{E}_{q_{\theta}} [\text{D}_{\text{KL}}[q_{\theta}(\mathbf{v}_0|\mathbf{x}_0) || p(\mathbf{v}_0)]] \\ &\quad - \sum_{t=1}^T \mathbb{E}_{q_{\theta}} [\text{D}_{\text{KL}}[q_{\theta}(\mathbf{v}_t|\mathbf{z}_{t-1}, \mathbf{v}_{t-1}) || p(\mathbf{v}_t)]] \end{aligned} \quad (7)$$

where the first term is the reconstruction objective, the second and third terms define the KL divergence on the initial distribution of latent variables, and the last term regularizes the time evolution of the posterior.

Recall that we assume that the observed spikes $\bar{\mathbf{x}}$ are samples from a Poisson process with underlying rates $\bar{\mathbf{r}}$. At each time step, the firing rates \mathbf{r}_t are predicted as a function of the latent variables \mathbf{z}_t and \mathbf{v}_t from the approximate posterior. The corresponding optimization objectives are defined as:

$$\begin{aligned} \mathcal{L}^{\text{Poisson}} &= - \sum_{t=0}^T \mathbb{E}_{q_{\theta}} [\log (\text{Poisson}(\mathbf{x}_t|\mathbf{r}_t))] \\ \mathcal{L}^{\text{KL}} &= \mathbb{E}_{q_{\theta}} [\text{D}_{\text{KL}}(q_{\theta}(\mathbf{z}_0|\mathbf{x}_0) || p(\mathbf{z}_0))] + \mathbb{E}_{q_{\theta}} [\text{D}_{\text{KL}}(q_{\theta}(\mathbf{v}_0|\mathbf{x}_0) || p(\mathbf{v}_0))] \\ &\quad + \sum_{t=1}^T \mathbb{E}_{q_{\theta}} [\text{D}_{\text{KL}}(q_{\theta}(\mathbf{v}_t|\mathbf{z}_{t-1}, \mathbf{v}_{t-1}) || p(\mathbf{v}_t))] \end{aligned} \quad (8)$$

261 where $\mathcal{L}_{\text{Poisson}}$ denotes the Poisson negative log-likelihood,²⁸⁷
 262 and \mathcal{L}^{KL} represents the KL divergence regularization. In practical
 263 implementation, the decoder q also incorporates the encoder's hidden states as part of its input. For brevity, we defer
 264 the details and provide a more thorough explanation when introducing the model architecture and referring to Fig. 1.
 265

267 Latent Langevin Posterior Flow

268 To derive the time evolution of the posterior, we can decompose the underdamped Langevin equation into two steps:
 269

$$\begin{aligned} \text{Deterministic Step: } \frac{dz}{dt} &= \mathbf{v}, \frac{d\mathbf{v}}{dt} = -\frac{\nabla_z U(\mathbf{z})}{m} \\ \text{Probabilistic Step: } \frac{d\mathbf{v}}{dt} &= -\gamma\mathbf{v} + \sqrt{2m\gamma k_B\tau}\eta(t) \end{aligned} \quad (9)$$

270 Here the deterministic step amounts to the Hamiltonian flow
 271 where the total energy is conserved, and the probabilistic step²⁹³
 272 follows the stochastic Ornstein-Uhlenbeck process. Our goal²⁹⁴
 273 is to derive the time evolution of joint posterior probability.

274 **Hamiltonian Flow.** The deterministic step of Eq. (9) actually
 275 defines the Hamiltonian of the system:

$$\mathcal{H}(\mathbf{v}, \mathbf{z}) = \underbrace{\frac{U(\mathbf{z}, \mathbf{x})}{m}}_{\text{Potential}} + \underbrace{\frac{1}{2} \|\mathbf{v}\|^2}_{\text{Kinetic}} \quad (10)$$

276 The total energy is conserved in the time evolution of the coupled variables. Discretizing over time leads to the joint update²⁹⁶
 277

$$\begin{aligned} [\mathbf{z}_{t+\frac{1}{2}}, \mathbf{v}_{t+\frac{1}{2}}] &= f(\mathbf{z}_t, \mathbf{v}_t) = [f_z, f_v] \\ &= [\mathbf{z}_t + \frac{\partial \mathcal{H}}{\partial \mathbf{v}_t} \Delta t, \mathbf{v}_t - \frac{\partial \mathcal{H}}{\partial \mathbf{z}_t} \Delta t] \end{aligned} \quad (11)$$

278 where the subscript t denote the time index, Δt represents the
 279 step size in physical time, and $[f_z, f_v]$ denotes the above coupled transformation. The joint posterior $q(\mathbf{z}_{t+\frac{1}{2}}, \mathbf{v}_{t+\frac{1}{2}})$ obeys
 280 the normalizing-flow-like density evolution:
 281

$$\log q(\mathbf{z}_{t+\frac{1}{2}}, \mathbf{v}_{t+\frac{1}{2}}) = \log q(\mathbf{z}_t, \mathbf{v}_t) + \log |\det(I + \mathcal{J}_{\mathcal{H}} \Delta t)|^{-1} \quad (12)$$

282 where $\mathcal{J}_{\mathcal{H}}$ is the Jacobian induced by the Hamiltonian. For
 283 infinitesimal steps Δt , we have:

$$\begin{aligned} \det(I + \mathcal{J}_{\mathcal{H}} dt) &= \det \left[I + \begin{pmatrix} \frac{\partial^2 \mathcal{H}}{\partial z_i \partial v_j} & -\frac{\partial^2 \mathcal{H}}{\partial z_i \partial z_j} \\ \frac{\partial^2 \mathcal{H}}{\partial v_i \partial z_j} & -\frac{\partial^2 \mathcal{H}}{\partial v_i \partial v_j} \end{pmatrix} dt \right] \\ &\approx 1 + \text{Tr} \left(\begin{pmatrix} \frac{\partial^2 \mathcal{H}}{\partial z_i \partial v_j} & -\frac{\partial^2 \mathcal{H}}{\partial z_i \partial z_j} \\ \frac{\partial^2 \mathcal{H}}{\partial v_i \partial z_j} & -\frac{\partial^2 \mathcal{H}}{\partial v_i \partial v_j} \end{pmatrix} dt \right) \approx 1 \end{aligned} \quad (13)$$

284 The deterministic conditional can thus be written as:
 300

$$q(\mathbf{z}_{t+\frac{1}{2}}, \mathbf{v}_{t+\frac{1}{2}} | \mathbf{z}_t, \mathbf{v}_t) \approx \delta(\mathbf{z}_{t+\frac{1}{2}} - f_z(\mathbf{z}_t, \mathbf{v}_t), \mathbf{v}_{t+\frac{1}{2}} - f_v(\mathbf{z}_t, \mathbf{v}_t)) \quad (14)$$

285 The posterior conserves probability mass over time. Let³⁰⁴
 286 $q(\mathbf{z}_{t+1} | \mathbf{z}_{t+\frac{1}{2}})$ denote a trivial Dirac δ -function. Marginalizing³⁰⁵

$\mathbf{z}_{t+1/2}$ out gives the conditional of \mathbf{z}_{t+1} :

$$\begin{aligned} q(\mathbf{z}_{t+1} | \mathbf{z}_t, \mathbf{v}_t) &= \int q(\mathbf{z}_{t+1} | \mathbf{z}_{t+\frac{1}{2}}) q(\mathbf{z}_{t+\frac{1}{2}} | \mathbf{z}_t, \mathbf{v}_t) d\mathbf{z}_{t+\frac{1}{2}} \\ &= \int \delta(\mathbf{z}_{t+1} - \mathbf{z}_{t+\frac{1}{2}}) \delta(\mathbf{z}_{t+\frac{1}{2}} - f_z(\mathbf{z}_t, \mathbf{v}_t)) d\mathbf{z}_{t+\frac{1}{2}} \\ &= \delta(\mathbf{z}_{t+1} - f_z(\mathbf{z}_t, \mathbf{v}_t)) \end{aligned} \quad (15)$$

Ornstein-Uhlenbeck Process. The probabilistic step of Eq. (9) is given by the Ornstein–Uhlenbeck process which describes a noisy relaxation process, whereby a particle is disturbed with noise $\eta(t)$ and simultaneously relaxed to its mean position with friction coefficient γ :

$$\frac{d\mathbf{v}}{dt} = -\gamma\mathbf{v} + \sqrt{2m\gamma k_B\tau} \eta(t). \quad (16)$$

Discretizing over timesteps, the Gaussian noise yields a Gaussian transition update as:

$$\begin{aligned} q(\mathbf{v}_{t+1} | \mathbf{z}_t, \mathbf{v}_t) &= \int q(\mathbf{v}_{t+1} | \mathbf{v}_{t+\frac{1}{2}}) q(\mathbf{v}_{t+\frac{1}{2}} | \mathbf{z}_t, \mathbf{v}_t) d\mathbf{v}_{t+\frac{1}{2}} \\ &= \int \mathcal{N}\left((1-\gamma)\mathbf{v}_{t+\frac{1}{2}}, 2m\gamma k_B\tau I\right) \delta(\mathbf{v}_{t+\frac{1}{2}} - f_v(\mathbf{z}_t, \mathbf{v}_t)) d\mathbf{v}_{t+\frac{1}{2}} \\ &= \mathcal{N}\left((1-\gamma)f_v(\mathbf{z}_t, \mathbf{v}_t), 2m\gamma k_B\tau I\right) \end{aligned} \quad (17)$$

The re-parameterization trick (Kingma & Welling, 2013) is used to allow for differentiation through the Gaussian kernel. We alternate these two steps to compute the conditional update of the joint posterior $q(\mathbf{z}_{t+1}, \mathbf{v}_{t+1} | \mathbf{z}_t, \mathbf{v}_t)$.

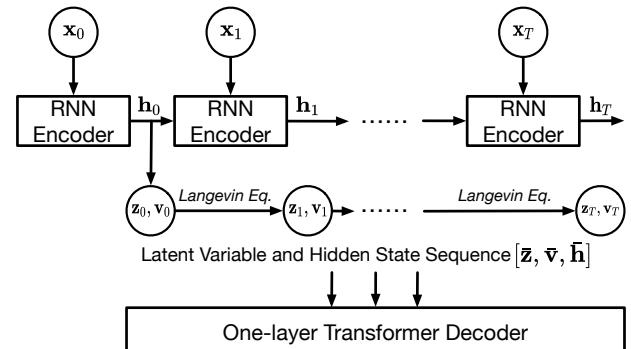


Figure 1: Workflow of our method: the RNN encoder takes the spike data as input at every timestep and updates the hidden states \mathbf{h}_t , and the latent variables $\mathbf{z}_t, \mathbf{v}_t$ evolve in time according to the Langevin equation. Finally, the Transformer decoder predicts the firing rates from the entire sequence.

299 Architecture and Training Algorithm

Fig. 1 displays our model architecture. A recurrent encoder GRU (Chung et al., 2014) is used to encode the input sequence to a set of hidden states $\mathbf{h}_t = \text{GRU}(\mathbf{x}_{t-1}, \mathbf{h}_{t-1})$. The initial conditions for the latent variables \mathbf{z}_0 & \mathbf{v}_0 are inferred from \mathbf{h}_0 , and then evolve forward in time according to both the deterministic and stochastic steps. The RNN encoder is included

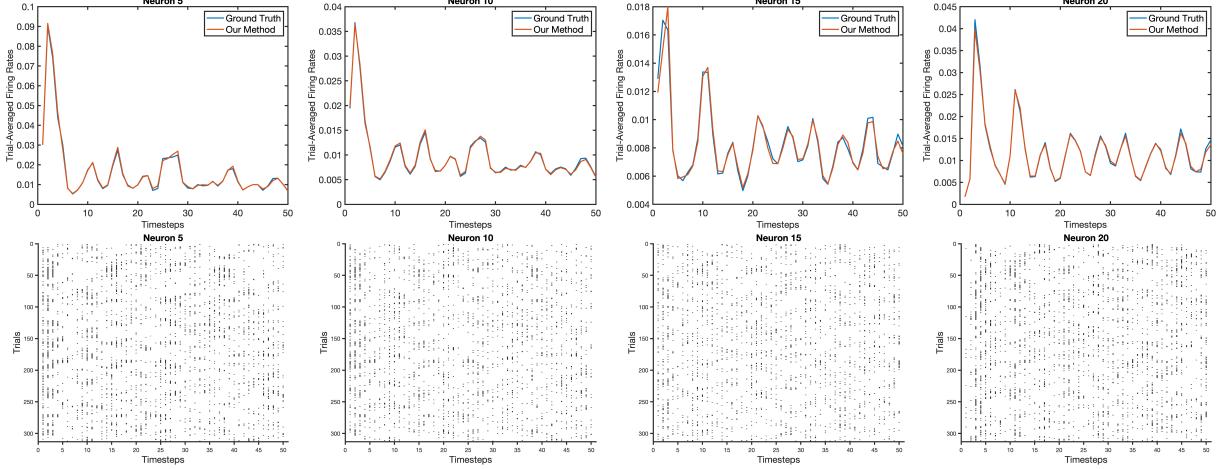


Figure 2: Trial-average firing rates (top) and the corresponding spike trains (bottom) of some neurons of Lorenz system.

Table 1: Results on MC_Maze and MC_RTT with the sampling frequency of 20 ms.

Methods	MC-Maze				MC-RTT		
	co-bps (\uparrow)	vel R2 (\uparrow)	psht R2 (\uparrow)	fp-bps (\uparrow)	co-bps (\uparrow)	vel R2 (\uparrow)	fp-bps (\uparrow)
Smoothing (Yu et al., 2008)	0.2076	0.6111	-0.0005	—	0.1454	0.3875	—
GPFA (Yu et al., 2008)	0.2463	0.6613	0.5574	—	0.1769	0.5263	—
SLDS (Linderman et al., 2017)	0.2117	0.7944	0.4709	-0.1513	0.1662	0.5365	-0.0509
NDT (Ye & Pandarinath, 2021)	0.3597	0.8897	0.6172	0.2442	0.1643	0.6100	0.1200
AutoLFADS (Pandarinath et al., 2018b)	0.3554	0.8906	0.6002	0.2454	0.1976	0.6105	0.1241
MINT (Perkins et al., 2023)	0.3295	0.9005	0.7474	0.2076	0.2008	0.6547	0.1099
LangevinFlow	0.3641	0.8940	0.6801	0.2573	0.2010	0.6652	0.1389

Algorithm 1 Training algorithm of our Langevin flow.

Require: Recurrent encoder GRU, Transformer-based sequence decoder Transformer, linear mapping for latent variables n , input spike sequence \bar{x} , and posterior q_θ .

- 1: **repeat**
- 2: Initial hidden states: $\mathbf{h}_0 = \text{GRU}(\mathbf{x}_0)$
- 3: Initial latent variables: $[\mathbf{z}_0, \mathbf{v}_0] = n(\mathbf{h}_0)$
- 4: Time step counter: $i = 0$
- 5: **while** $i \leq T - 1$ **do**
- 6: Update position (deterministic step): $\mathbf{z}_{i+1} = \mathbf{z}_i + \mathbf{v}_i$
- 7: Update velocity (deterministic step):

$$\mathbf{v}_{i+\frac{1}{2}} = \mathbf{v}_i - \nabla_{\mathbf{z}} U(\mathbf{z}_i) / m$$
- 8: Update velocity (probabilistic step):

$$\mathbf{v}_{i+1} = (1 - \gamma) \mathbf{v}_{i+\frac{1}{2}} + \sqrt{2m\gamma k_B \tau} \boldsymbol{\eta}(i)$$
- 9: Update hidden states: $\mathbf{h}_{i+1} = \text{GRU}(\mathbf{x}_{i+1}, \mathbf{h}_i)$
- 10: Concatenate variable sequences:

$$\bar{\mathbf{z}} = [\mathbf{z}_{0:i}, \mathbf{z}_{i+1}], \bar{\mathbf{v}} = [\mathbf{v}_{0:i}, \mathbf{v}_{i+1}], \bar{\mathbf{h}} = [\mathbf{h}_{0:i}, \mathbf{h}_{i+1}]$$
- 11: Update time step counter: $i = i + 1$
- 12: **end while**
- 13: Predict firing rates: $\bar{\mathbf{r}} = \text{Transformer}(\bar{\mathbf{z}}, \bar{\mathbf{v}}, \bar{\mathbf{h}})$
- 14: Optimize the $\mathcal{L}_{\text{Poisson}}$ and \mathcal{L}^{KL} .
- 15: **until** converged

to model the short-range dependencies of neural data. After encoding input spikes and performing latent Langevin flow, all hidden states and latent variables are combined through a single Transformer (Vaswani et al., 2017) layer to predict the firing rates of the sequence: $\bar{\mathbf{r}} = \text{Transformer}(\bar{\mathbf{z}}, \bar{\mathbf{v}}, \bar{\mathbf{h}})$. We use a Transformer for decoding because it can capture long-range interactions over time and allows for a more globally informed prediction of firing rates. The parameters of the GRU, Transformer, linear readout, and potential are then optimized to maximize the ELBO in Eq. (6). We summarize the training algorithm in Alg. 1.

Experiments

This section presents the experimental setup and the results of our method. We start with the setup of the experiments, discuss the results on the toy dataset of synthetic Lorenz attractor, and finally present the extensive evaluation of the Neural Latents Benchmark.

Setup

Baselines. On the synthetic Lorenz attractor dataset, we mainly compare with AutoLFADS (Pandarinath et al., 2018a) and NDT (Ye & Pandarinath, 2021), which are dedicated RNN and Transformer architectures designed for neural population modeling. On NLB, we further compare with a wide range of

Table 2: Results on Area2_Bump and DMFC_RSG with the sampling frequency of 20 ms.

Methods	Area2-Bump				DMFC-RSG			
	co-bps (\uparrow)	vel R2 (\uparrow)	psth R2 (\uparrow)	fp-bps (\uparrow)	co-bps (\uparrow)	tp corr (\downarrow)	psth R2 (\uparrow)	fp-bps (\uparrow)
Smoothing (Yu et al., 2008)	0.1529	0.5319	-0.1840	—	0.1183	-0.5115	0.2830	—
GPFA (Yu et al., 2008)	0.1791	0.6094	0.5998	—	0.1378	-0.5506	0.3180	—
SLDS (Linderman et al., 2017)	0.1816	0.6967	0.5200	0.0132	0.1575	-0.5997	0.5470	0.0374
NDT (Ye & Pandarinath, 2021)	0.2624	0.8623	0.6078	0.1459	0.1757	-0.6928	0.5477	0.1649
AutoLFADS (Pandarinath et al., 2018b)	0.2542	0.8565	0.6552	0.1423	0.1871	-0.7819	0.5903	0.1791
MINT (Perkins et al., 2023)	0.2718	0.8803	0.9049	0.1489	0.1824	-0.6995	0.7014	0.1647
LangevinFlow	0.2881	0.8810	0.7641	0.1647	0.1904	-0.5981	0.6079	0.1945

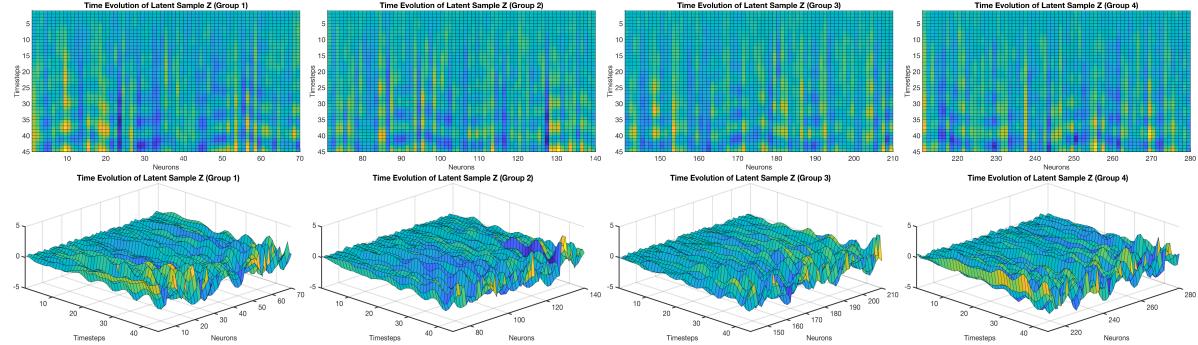


Figure 3: Spatiotemporal waves induced by our LangevinFlow in different views on MC_Maze. Here each group denotes an independent set of convolution channels.

competitive baselines on the public leaderboard ¹.

Implementation Details. The Transformer decoder consists of only 1 self-attention layer with 4 attention heads. Another linear layer is used for reading out firing rates. For the Langevin equation, the mass m is set to an identity matrix, and both Boltzman constant k_B and temperature τ are set 1. The damping ratio γ is tuned for specific datasets but stays in the range of $[0.55, 0.8]$. For the potential, the latent code is first divided into 4 groups (*i.e.*, independent convolution channels), and we use a one-dimensional convolution layer of kernel size 7 with padding 3 and stride 1 for each group. We adopt a hyper-parameter λ to tune the strength of the KL penalty and add a scheduler to gradually increase the value so that the optimization does not quickly set the KL divergence to 0. As the observed spikes are assumed to be from a low-dimensional subspace, we use coordinated dropout (Keshtkaran & Pandarinath, 2019) to randomly drop input samples during the training, which enforces the model to learn the underlying latent structure shared across neurons.

Synthetic Lorenz Attractor

The Lorenz attractor is a 3D dynamical system where the dynamics are governed by three coupled non-linear equations:

$$\begin{aligned} \dot{y}_1 &= \sigma(y_2 - y_3), \\ \dot{y}_2 &= y_1(\rho - y_3)y_2, \\ \dot{y}_3 &= y_1y_2 - \beta y_3 \end{aligned} \tag{18}$$

¹<https://eval.ai/web/challenges/challenge-page/1256/leaderboard/>

where σ, ρ, β are hyper-parameters. In line with Ye & Pandarinath (2021), we first simulate the 3D Lorenz attractor and then project the 3D states into a higher dimensionality using a random linear transform to form firing rates for a population of synthetic neurons. The spikes of each trial are sampled from the Poisson distribution with these firing rates. The evaluating methods are expected to infer the true firing rates of the Lorenz system from the synthetic spiking activity alone.

Table 3: R_2 of the firing rates on Lorenz Attractor.

	AutoLFADS	NDT	LangevinFlow
$R_2(\uparrow)$	0.921 ± 0.005	0.934 ± 0.004	0.944 ± 0.003

Table 3 presents the results of R_2 correlation between the predicted firing rates and the ground truth. Our LangevinFlow outperforms the baselines and achieves a higher correlation score in predicting the firing rates, indicating that our model more accurately captures the underlying dynamical structure of the synthetic neural data. Fig. 2 compares the predicted trial-averaged firing rates and of several randomly selected neurons alongside their ground truth counterparts, as well as the corresponding spike trains. Our method closely recovers the general shape and amplitude of the firing rate curves, and also accurately reflects the temporal structure of spike trains.

Neural Latent Benchmark

The NLB (Pei et al., 2021) is a benchmark designed for evaluating unsupervised approaches that model neural popula-

Table 4: Results on MC_Maze and MC_RTT with the sampling frequency of 5 ms.

Methods	MC-Maze				MC-RTT		
	co-bps (\uparrow)	vel R2 (\uparrow)	psth R2 (\uparrow)	fp-bps (\uparrow)	co-bps (\uparrow)	vel R2 (\uparrow)	fp-bps (\uparrow)
Smoothing (Yu et al., 2008)	0.2109	0.6238	0.1853	–	0.1468	0.4142	–
GPFA (Yu et al., 2008)	0.1872	0.6399	0.5150	–	0.1548	0.5339	–
SLDS (Linderman et al., 2017)	0.2249	0.7947	0.5330	-0.1513	0.1649	0.5206	0.0620
NDT (Ye & Pandarinath, 2021)	0.3229	0.8862	0.5308	0.2206	0.1749	0.5656	0.0970
AutoLFADS (Pandarinath et al., 2018b)	0.3364	0.9097	0.6360	0.2349	0.1868	0.6167	0.1213
MINT (Perkins et al., 2023)	0.3304	0.9121	0.7496	0.2076	0.2014	0.6559	0.1099
LangevinFlow	0.3624	0.7867	0.5515	0.2556	0.1900	0.4748	0.1300

Table 5: Results on Area2_Bump and DMFC_RSG with the sampling frequency of 5 ms.

Methods	Area2-Bump				DMFC-RSG			
	co-bps (\uparrow)	vel R2 (\uparrow)	psth R2 (\uparrow)	fp-bps (\uparrow)	co-bps (\uparrow)	tp corr (\downarrow)	psth R2 (\uparrow)	fp-bps (\uparrow)
Smoothing (Yu et al., 2008)	0.1544	0.5736	0.2084	–	0.1202	-0.5139	0.2993	–
GPFA (Yu et al., 2008)	0.1680	0.5975	0.5289	–	0.1176	-0.3763	0.2142	–
SLDS (Linderman et al., 2017)	0.1960	0.7385	0.5740	0.0242	0.1243	-0.5412	0.3372	-0.0418
NDT (Ye & Pandarinath, 2021)	0.2623	0.8672	0.6619	0.1184	0.1720	-0.5624	0.4377	0.1404
AutoLFADS (Pandarinath et al., 2018b)	0.2569	0.8492	0.6318	0.1505	0.1829	-0.8248	0.6359	0.1844
MINT (Perkins et al., 2023)	0.2735	0.8877	0.9135	0.1483	0.1821	-0.6929	0.7013	0.1650
LangevinFlow	0.2772	0.8580	0.7567	0.1526	0.1841	-0.5466	0.6092	0.1689

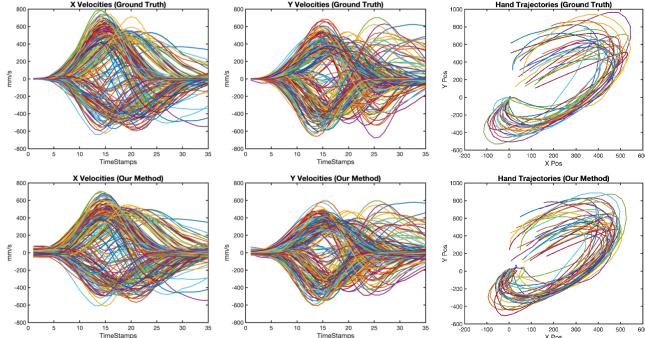


Figure 4: Kinematics (hand velocities and trajectories) of the ground truth and predicted by our method on Area2_Bump.

gression. The model is not state of the art on PSTH R^2 , which may be expected given the known trade-off between the co-bps metric and the performance on trial-averaged PSTH correlation metric. The overall performance across multiple metrics underscores its robustness in capturing neural dynamics.

5 ms Results. Table 4 and 5 report the evaluation results on NLB with the sampling frequency of 5 ms. The results at this higher temporal resolution are very coherent with those of 20 ms. Our LangevinFlow maintains impressive performance, achieving strong likelihood scores on held-out neurons and forward predictions on most datasets. This consistency across different sampling frequencies confirms the model’s ability to adapt to varying temporal granularities, which is critical for capturing the fine-scale dynamics present in neural data.

Spatiotemporal Wave Dynamics. Fig. 3 displays the smooth spatiotemporal waves induced by our coupled oscillator potential. We can see that the latent variables in different convolution groups exhibit clear but distinct wave patterns, reminiscent of traveling waves observed in cortical activity (Ermentrout & Kleinfeld, 2001; Muller et al., 2014). Such wave dynamics are thought to play several key computational roles in neuroscience. For example, traveling waves have been proposed to facilitate the integration of information over distributed neural populations, serving as a mechanism for coordinating activity across different brain regions (Buzsaki, 2006; Miller et al., 2009; Muller et al., 2018). They can help synchronize the timing of neural firing, thereby enhancing signal propagation and ensuring that information is efficiently routed and integrated. Moreover, wave dynamics may support processes such as working memory, decision-making, predictive decoding, and sensorimotor integration (Sato et al., 2012; Engel et

tion activities. This benchmark provides four curated neuro-404 physiological datasets from monkeys that span motor, sen-405 sory, and cognitive brain regions, with behaviors that vary from406 pre-planned, stereotyped movements to those in which sen-407 sory input must be dynamically integrated. The primary metric408 co-smoothing (Macke et al., 2011) evaluates the normalized409 log-likelihood of held-out neuronal activity prediction, while the410 secondary metrics can include behavior decoding accuracy411 match to PSTH, or log-likelihood of forward predictions. Two412 sampling frequencies (5ms and 20ms) are pre-defined to ob-413 tain datasets with different sequence lengths.

20 ms Results. In Table 1 and 2, we see that our Langevin-414 Flow achieves state of the art on the likelihood of held-out415 neurons (co-smoothing bits per spike), as well as forward pre-417 diction bits per spike. The model also compares very favorably418 in terms of the behavioral metrics such as hand-velocity re-419

420 al., 2013; Besserve et al., 2015; Alamia & VanRullen, 2019⁴⁵²
 421 Friston, 2019). In our model, the emergence of these wave⁴⁵³
 422 patterns not only reflects the inherent oscillatory dynamics of⁴⁵⁴
 423 the neural data, but also suggests that our coupled oscillator⁴⁵⁵
 424 potential may be capturing similar computational principles,⁴⁵⁶
 425 contributing to the robust performance of our approach. ⁴⁵⁷

426 **Kinematics Visualization.** Fig. 4 illustrates the time evolu-⁴⁵⁸
 427 tion of key kinematic variables on the `Area2_Bump` dataset, in-⁴⁵⁹
 428 cluding hand X and Y velocities, as well as the overall hand⁴⁶⁰
 429 trajectories. The high behavior decoding accuracy of our⁴⁶¹
 430 model is evident here: linear regression models fitted on pre-⁴⁶²
 431 dicted firing rates yield kinematic outputs that closely match⁴⁶³
 432 the ground truth. These results validate the accuracy of the⁴⁶⁴
 433 neural activity reconstruction, demonstrating the practical util-⁴⁶⁵
 434 ity of our approach in decoding behaviorally relevant signals. ⁴⁶⁶

467 Table 6: Results of ablation studies with the sampling fre-⁴⁶⁹
 468 quency of 20 ms on `MC_Maze` (top) and `Area2_Bump` (bottom)⁴⁷⁰

	co-bps (↑)	vel R2 (↑)	psth R2 (↑)	fp-bps (↑)
LangevinFlow	0.3641	0.8940	0.6801	0.2573
Baseline 1	0.3572	0.8893	0.6683	0.2419
Baseline 2	0.3328	0.8579	0.6812	0.2549
Baseline 3	0.3441	0.8109	0.4684	0.2506
Baseline 4	0.3612	0.9005	0.6743	0.2469
Baseline 5	0.3586	0.8932	0.6881	0.2351
LangevinFlow	0.2881	0.8810	0.7641	0.1647
Baseline 1	0.2795	0.8725	0.7386	0.1549
Baseline 2	0.2679	0.8641	0.7013	0.1488
Baseline 3	0.2838	0.8552	0.7165	0.1498
Baseline 4	0.2800	0.8739	0.7803	0.1631
Baseline 5	0.2843	0.8614	0.6994	0.1596

486 **Ablation Studies.** Finally, we designed a number of base-
 487 lines and performed ablations to understand the role each
 488 component of our LangevinFlow plays on overall performance.
 489 Specifically, we considered the following model variants:

- 490 • *Baseline 1*: a linear decoder in place of the Transformer.
- 491 • *Baseline 2*: a linear encoder with no hidden states.
- 492 • *Baseline 3*: a model without Langevin dynamics relying⁴⁹³
 493 solely on hidden state dynamics.
- 494 • *Baseline 4*: a variant in which the oscillator potential⁴⁹⁵
 495 also couples latent variables to input spikes. Explicitly:

$$496 U(\mathbf{z}, \mathbf{x}) = \mathbf{z}^T \frac{\mathbf{W}_z}{\|\mathbf{W}_z\|_2} \mathbf{z} + \mathbf{z}^T \mathbf{W}_{\mathbf{x}} \mathbf{x}.$$
⁴⁹⁷
- 498 • *Baseline 5*: a version using first-order dynamics instead of⁴⁹⁹
 499 Langevin dynamics. Explicitly: $\mathbf{z}_{t+1} = \mathbf{z}_t - \nabla_{\mathbf{z}_t} U(\mathbf{z}_t)$.⁵⁰⁰

501 Table 6 shows the results on `MC_Maze` and `Area2_Bump`. In⁵⁰²
 502 *Baseline 1*, we replaced the Transformer decoder with a linear⁵⁰³
 503 decoder. Compared to LangevinFlow, this variant has slightly⁵⁰⁴
 504 lower co-smoothing (co-bps) and forward prediction (fp-bps)⁵⁰⁵

505 scores, which indicate the importance of the Transformer in
 506 capturing global interactions across the entire latent sequence
 507 and in refining firing rate predictions. The global attention
 508 mechanism appears to integrate information more effectively
 509 than a simpler linear mapping.

510 *Baseline 2* removes the hidden states from the encoder by
 511 replacing the recurrent network with a linear encoder. This
 512 modification leads to a noticeable drop in performance, par-
 513 ticularly in the co-bps and velocity R2 scores. This suggests
 514 that the local temporal dependencies captured by recurrent
 515 hidden states are essential for modeling the short-range dy-
 516 namics present in the neural spike activity.

517 *Baseline 3* completely omits Langevin dynamics and relies
 518 solely on hidden state dynamics. This modification results in a
 519 marked performance drop, especially evident in the significant
 520 drop in PSTH R2 on `MC_Maze`. This decline emphasizes the
 521 crucial role of incorporating Langevin dynamics with a learned
 522 potential, which represents intrinsic autonomous processes
 523 and facilitates the emergence of oscillations. The Langevin
 524 dynamics are thus expected to help the model capture the un-
 525 derlying dynamical system more faithfully.

526 In *Baseline 4*, we augment the oscillator potential by incor-
 527 porating the input spiking signal. This modification does not
 528 provide a substantial benefit to the performance and in some
 529 cases slightly underperforms the original model. This result
 530 suggests that the learned potential function in its original for-
 531 mulation is already capturing the necessary dependencies.

532 Finally, *Baseline 5* substitutes the second-order Langevin
 533 dynamics with a simpler first-order update rule. The observed
 534 performance drop in several metrics confirms that the second-
 535 order Langevin dynamics – featuring terms for inertia and
 536 damping – is more effective in modeling the neural dynamics.
 537 The richer dynamics afforded by the second-order formulation
 538 appear to better capture both the smooth evolution and the
 539 inherent variability of the underlying latent factors.

540 Conclusions

541 This paper presents LangevinFlow, a sequential variational
 542 autoencoder whose latent dynamics are governed by un-
 543 derdamped Langevin equations. By embedding physically
 544 grounded stochastic processes and coupled oscillatory be-
 545 havior into the latent space, our framework offers a power-
 546 ful avenue for modeling complex neural population activity.
 547 We anticipate that these ideas will inspire further exploration
 548 of physics-informed inductive biases in neural latent variable
 549 modeling, paving the way for even richer and more inter-
 550 pretable dynamical systems approaches.

551 **Limitations and Future Work.** While our framework was
 552 shown to yield very promising results, our proposed Langevin
 553 dynamics with the present potential function operate in a
 554 largely autonomous manner. This formulation seemed to
 555 work better than an input-dependent potential in ablation stud-
 556 ies; however, adding more input dependence to this potential
 557 should intuitively help Langevin dynamics better account for
 558 external influences. In future work, exploring more complex

506 input-dependent potential functions could likely yield significant benefits and are a promising new avenue for research
507 uniquely enabled by our LangevinFlow framework.
508

References

510 Alamia, A., & VanRullen, R. (2019). Alpha oscillations and
511 traveling waves: Signatures of predictive coding? *PLoS
512 Biology*, 17(10), e3000487.

513 Azabou, M., Arora, V., Ganesh, V., Mao, X., Nachimuthu, S.,
514 Mendelson, M., ... Dyer, E. (2024). A unified, scalable
515 framework for neural population decoding. *Advances in
516 Neural Information Processing Systems*, 36.

517 Besserve, M., Lowe, S. C., Logothetis, N. K., Schölkopf, B., &
518 Panzeri, S. (2015). Shifts of gamma phase across primary
519 visual cortical sites reflect dynamic stimulus-modulated in-
520 formation transfer. *PLoS biology*, 13(9), e1002257.

521 Buzsaki, G. (2006). *Rhythms of the brain*. Oxford university
522 press.

523 Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical
524 evaluation of gated recurrent neural networks on se-
525 quence modeling. *arXiv preprint arXiv:1412.3555*.

526 Churchland, M. M., Byron, M. Y., Ryu, S. I., Santhanam, G.,
527 & Shenoy, K. V. (2006). Neural variability in premotor cor-
528 tex provides a signature of motor preparation. *Journal of
529 Neuroscience*, 26(14), 3697–3712.

530 Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Fos-
531 ter, J. D., Nuyujukian, P., Ryu, S. I., & Shenoy, K. V.
532 (2012). Neural population dynamics during reaching. *Na-
533 ture*, 487(7405), 51–56.

534 Cohen, M. R., & Kohn, A. (2011). Measuring and interpreting
535 neuronal correlations. *Nature neuroscience*, 14(7), 811–
536 819.

537 Dabagia, M., Kording, K. P., & Dyer, E. L. (2023). Aligning
538 latent representations of neural activity. *Nature Biomedical
539 Engineering*, 7(4), 337–343.

540 Diamant, N., & Bortoff, A. (1969, February). Nature of the
541 intestinal low-wave frequency gradient. *American Journal
542 of Physiology-Legacy Content*, 216(2), 301–307. doi: 10
543 .1152/ajplegacy.1969.216.2.301

544 Duncker, L., Bohner, G., Boussard, J., & Sahani, M. (2019).
545 Learning interpretable continuous-time models of latent
546 stochastic dynamical systems. In *International conference
547 on machine learning* (pp. 1726–1734).

548 Duncker, L., & Sahani, M. (2018). Temporal alignment and
549 latent gaussian process factor inference in population spike
550 trains. *Advances in neural information processing systems*,
551 31.

552 Ecker, A. S., Berens, P., Keliris, G. A., Bethge, M., Logothetis,
553 N. K., & Tolias, A. S. (2010). Decorrelated neuronal firing in
554 cortical microcircuits. *science*, 327(5965), 584–587.

555 Engel, A. K., Gerloff, C., Hilgetag, C. C., & Nolte, G. (2013).
556 Intrinsic coupling modes: multiscale interactions in ongoing
557 brain activity. *Neuron*, 80(4), 867–886.

558 Ermentrout, G. B., & Kleinfeld, D. (2001). Traveling electrical
559 waves in cortex: insights from phase dynamics and specu-
560 lation on a computational role. *Neuron*, 29(1), 33–44. doi:
561 [https://doi.org/10.1016/S0896-6273\(01\)00178-7](https://doi.org/10.1016/S0896-6273(01)00178-7)

562 Ermentrout, G. B., & Kopell, N. (1984). Frequency plateaus⁶¹⁶
563 in a chain of weakly coupled oscillators, i. *SIAM journal on*⁶¹⁷
564 *Mathematical Analysis*, 15(2), 215–237. 618

565 Friston, K. J. (2019). Waves of prediction. *PLoS biology*⁶¹⁹
566 17(10), e3000426. 620

567 Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A.⁶²¹
568 & Miller, L. E. (2020). Long-term stability of cortical popula⁶²²
569 tion dynamics underlying consistent behavior. *Nature neu*⁶²³
570 *roscience*, 23(2), 260–270. 624

571 Gallego, J. A., Perich, M. G., Miller, L. E., & Solla, S. A.⁶²⁵
572 (2017). Neural manifolds for the control of movement. *Neu*⁶²⁶
573 *ron*, 94(5), 978–984. doi: <https://doi.org/10.1016/j.neuron.2017.05.025> 627

574 Gallego, J. A., Perich, M. G., Naufel, S. N., Ethier, C., Solla,⁶²⁹
575 S. A., & Miller, L. E. (2018). Cortical population activity⁶³⁰
577 within a preserved neural manifold underlies multiple motor⁶³¹
578 behaviors. *Nature communications*, 9(1), 4233. 632

579 Gao, Y., Archer, E. W., Paninski, L., & Cunningham, J. P.⁶³³
580 (2016). Linear dynamical neural population models through⁶³⁴
581 nonlinear embeddings. *Advances in neural information pro*⁶³⁵
582 *cessing systems*, 29. 636

583 Genkin, M., Shenoy, K. V., Chandrasekaran, C., & Engel, T. A.⁶³⁷
584 (2023). The dynamics and geometry of choice in premotor⁶³⁸
585 cortex. *bioRxiv*. doi: 10.1101/2023.07.22.550183 639

586 Jaegle, A., Borgeaud, S., Alayrac, J.-B., Doersch, C., Ionescu,⁶⁴⁰
587 C., Ding, D., ... others (2022). Perceiver io: A general⁶⁴¹
588 architecture for structured inputs & outputs. In *International⁶⁴²*
589 *conference on learning representations*. 643

590 Kao, J. C., Nuyujukian, P., Ryu, S. I., Churchland, M. M., Cun⁶⁴⁴
591 ningham, J. P., & Shenoy, K. V. (2015). Single-trial dynam⁶⁴⁵
592 ics of motor cortex and their applications to brain-machine⁶⁴⁶
593 interfaces. *Nature communications*, 6(1), 7759. 647

594 Karpowicz, B. M., Ali, Y. H., Wimalasena, L. N., Sedler, A. R.⁶⁴⁸
595 Keshtkaran, M. R., Bodkin, K., ... Pandarinath, C. (2022).⁶⁴⁹
596 Stabilizing brain-computer interfaces through alignment of⁶⁵⁰
597 latent dynamics. *BioRxiv*, 2022–04. 651

598 Keshtkaran, M. R., & Pandarinath, C. (2019). Enabling hy⁶⁵²
599 perparameter optimization in sequential autoencoders for⁶⁵³
600 spiking neural data. *NeurIPS*. 654

601 Kingma, D. P., & Welling, M. (2013). *Auto-encoding variational*⁶⁵⁵
602 *bayes*. 656

603 Linderman, S., Johnson, M., Miller, A., Adams, R., Blei, D.⁶⁵⁷
604 & Paninski, L. (2017). Bayesian learning and inference in⁶⁵⁸
605 recurrent switching linear dynamical systems. In *Aistats*. 659

606 Macke, J. H., Buesing, L., Cunningham, J. P., Yu, B. M.⁶⁶⁰
607 Shenoy, K. V., & Sahani, M. (2011). Empirical models of⁶⁶¹
608 spiking in neural populations. *NeurIPS*, 24. 662

609 Miller, K. J., Sorensen, L. B., Ojemann, J. G., & Den Nijs,⁶⁶³
610 M. (2009). Power-law scaling in the brain surface electric⁶⁶⁴
611 potential. *PLoS computational biology*, 5(12), e1000609. 665

612 Muller, L., Chavane, F., Reynolds, J., & Sejnowski, T. J.⁶⁶⁶
613 (2018). Cortical travelling waves: mechanisms and com⁶⁶⁷
614 putational principles. *Nature Reviews Neuroscience*, 19(5),⁶⁶⁸
615 255–268. 669

562 Muller, L., Reynaud, A., Chavane, F., & Destexhe, A. (2014).
563 The stimulus-evoked population response in visual cortex of
564 awake monkey is a propagating wave. *Nature communica*⁶¹⁷
565 *tions*, 5(1), 3675.

566 Pandarinath, C., O'Shea, D. J., Collins, J., Jozefowicz, R.,
567 Stavisky, S. D., Kao, J. C., ... others (2018a). Infer⁶¹⁸
568 ring single-trial neural population dynamics using sequen⁶²²
569 tial auto-encoders. *Nature methods*.

570 Pandarinath, C., O'Shea, D. J., Collins, J., Jozefowicz, R.,
571 Stavisky, S. D., Kao, J. C., ... others (2018b). Infer⁶¹⁹
572 ring single-trial neural population dynamics using sequen⁶²³
573 tial auto-encoders. *Nature methods*.

574 Pei, F., Ye, J., Zoltowski, D., Wu, A., Chowdhury, R. H., Sohn,
575 H., ... others (2021). Neural latents benchmark'21: eval⁶²⁴
576 uating latent variable models of neural population activity.
577 *NeurIPS*.

578 Perkins, S. M., Cunningham, J. P., Wang, Q., & Churchland,
579 M. M. (2023). Simple decoding of behavior from a compli⁶²⁵
580 cated neural manifold. *BioRxiv*, 2023–04.

581 Sato, T. K., Nauhaus, I., & Carandini, M. (2012). Traveling
582 waves in visual cortex. *Neuron*, 75(2), 218–229.

583 Saxena, S., & Cunningham, J. P. (2019). Towards the neural
584 population doctrine. *Current opinion in neurobiology*, 55,
585 103–111.

586 Shenoy, K. V., Sahani, M., & Churchland, M. M. (2013). Cor⁶²⁶
587 tical control of arm movements: a dynamical systems per⁶²⁷
588 spective. *Annual review of neuroscience*, 36(1), 337–359.

589 Stevenson, I. H., & Kording, K. P. (2011). How advances in
590 neural recording affect data analysis. *Nature neuroscience*,
591 14(2), 139–142.

592 Sussillo, D., Jozefowicz, R., Abbott, L. F., & Pandarinath, C.⁶²⁸
593 (2016). *Lfads - latent factor analysis via dynamical sys*⁶²⁹
594 *tems*.

595 Sussillo, D., Stavisky, S. D., Kao, J. C., Ryu, S. I., & Shenoy,
596 K. V. (2016). Making brain-machine interfaces robust
597 to future neural variability. *Nature communications*, 7(1),
598 13749.

599 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
600 Gomez, A., ... Polosukhin, I. (2017). Attention is all you
601 need. In *Neurips*.

602 Vyas, S., Golub, M. D., Sussillo, D., & Shenoy, K. V. (2020).
603 Computation through neural population dynamics. *Annual*⁶³⁰
604 *review of neuroscience*, 43(1), 249–275.

605 Wu, A., Roy, N. A., Keeley, S., & Pillow, J. W. (2017). Gaus⁶³¹
606 sian process based nonlinear latent structure discovery in
607 multivariate spike train data. *Advances in neural informa*⁶³²
608 *tion processing systems*, 30.

609 Ye, J., Collinger, J., Wehbe, L., & Gaunt, R. (2024). Neu⁶³³
610 ral data transformer 2: multi-context pretraining for neural
611 spiking activity. *Advances in Neural Information Processing*
612 *Systems*, 36.

613 Ye, J., & Pandarinath, C. (2021). Representation learning
614 for neural population activity with neural data transformers.
615 *Neurons, Behavior, Data analysis, and Theory*.

670 Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S.,
671 Shenoy, K. V., & Sahani, M. (2008). Gaussian-process fac-
672 tor analysis for low-dimensional single-trial analysis of neu-
673 ral population activity. *NeurIPS*.

674 Zhao, Y., & Park, I. M. (2016). Interpretable nonlinear dy-
675 namic modeling of neural trajectories. *Advances in neural*
676 *information processing systems*, 29.

677 Zhao, Y., & Park, I. M. (2017). Variational latent gaussian
678 process for recovering single-trial dynamics from population
679 spike trains. *Neural computation*, 29(5), 1293–1316.