
Locally coupled oscillatory recurrent networks learn
traveling waves and topographic organization

Abstract: Complex spatio-temporal neural population dynamics such as traveling waves are known to
exist across multiple brain regions (Lubenov & Siapas, 2009; Muller et al., 2014), and have been hypothe-
sized to play diverse roles from information transfer (Sato et al., 2012) to long-term memory consolidation
(Muller et al., 2016). To-date, however, the empirical validation of these computational hypotheses has
been hindered by the lack of a flexible and efficiently trainable model of such behavior. In this work, we
introduce the Locally Coupled Oscillatory Recurrent Neural Network (LocoRNN), and show that it indeed
learns to leverage traveling waves, and other well known coordinated dynamics of coupled oscillators (Ku-
ramoto, 1975), in the service of structured sequence modeling. However, unlike previous models of such
dynamics, we show that our model remains a flexible, trainable, sequence model competitive with state
of the art on benchmarks such as the Hamiltonian Dynamics Forecasting Suite (Botev et al., 2021). Fur-
thermore, when trained to model simple image sequences such as simulated retinal waves, we see that
the orientation selectivity of hidden neurons becomes topographically organized, while such organization
is absent when trained on unstructured noise. The resulting organization is reminiscent of orientation
columns observed in the visual cortex and in line with prior work on activity-dependent organization in the
visual system during development (Ackman et al, 2012). Due to local connectivity, our model is both more
biologically plausible and parameter efficient than its globally coupled counterpart, the coRNN (Rusch &
Mishra, 2021), while also being substantially more amenable to gradient-based training than recent spik-
ing neural network counterparts (Davis et al, 2021) due to provably bounded gradients. Overall, we believe
our results highlight the value of the LocoRNN as a novel tool for investigating the diversity of hypothesized
roles of synchronous neural dynamics and their impact on computation.

Figure 1: Visualization of input sequences x (top), hidden
state z (middle), and reconstructions x̂ (bottom), on four
datasets (quadrants a, b, c, d). Pixel brightess of z depicts the
instantaneous firing rate of spatially located neurons. The
LocoRNN learns to exhibit different dynamics per dataset:
compact traveling waves on rotating MNIST (a), diffuse inter-
acting waves on simple periodic inputs (b), standing waves
when modeling spring dynamics (c), and unstructured inde-
pendent oscillatory dynamics for unstructured noise (d).

Additional Detail: Neural oscillations and trav-
eling waves have long been a subject of study
in neuroscience and neurophysiology (Hughes,
1995; Muller et al., 2018). Recent advances in
measurement technology have brought renewed
attention to the subject by allowing for much
more precise observation of traveling waves in
awake subjects (Davis et al., 2020). Along with
the increase in experimental results, a diversity of
hypotheses have been developed for the compu-
tational roles of these dynamics, including: the
contextualization and integration of distant in-
formation (Sato et al., 2012), the sequencing of
motor cortex activation (Takahashi et al., 2015),
and the consolidation of memories during sleep
(Muller et al., 2016). However, to-date, the com-
putational models capable of investigating these
hypotheses have been limited to those which ei-
ther are built for the primary purpose of analysis
(Davis et al, 2021), or those which perform very
simple binary operations (Gong & van Leeuwen,
2009), with neither set leveraging the flexible computational capabilities of modern deep neural networks.

A well known model of traveling waves from the neuroscience literature is based upon a dynamical system
of locally coupled oscillators (Diamant & Bortoff, 1969; Ermentrout & Kleinfeld, 2001). In this work, we
leverage the recently popularized connection between recurrent neural networks (RNNs) and discretized
ordinary differential equations to integrate the structured and biologically relevant dynamics of locally
coupled oscillator networks into a powerful RNN model. Specifically, we consider the system:
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The function fθ denotes the encoder, σ(·) = tanh(·) the transfer/activation function, x(t ) the time-varying
input, and z(t ) ∈RD×D the dynamic hidden state organized as a fixed 2-dimensional lattice. Locality of the
recurrent connections is enforced by the convolution operation (⋆) performed spatially over the lattice. In
practice, this equation is discretized and integrated numerically yielding the following RNN equations:

zt+1 = zt +∆t (vt+1) , vt+1 = vt +∆t
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We denote this model the Locally Coupled Oscillatory Recurrent Neural Network (LocoRNN), owing to the
fact that it can be seen as a Coupled Oscillatory Recurrent Neural Network (coRNN) (Rusch & Mishra, 2021)
modified to restrict recurrent connectivity to be topographically local.

HGN++ ODE LSTM LocoRNN

Spring 447 (0) 430 (26) 302 (63) 311.8 (27)
Pendulum 105 (21) 212 (65) 3 (4) 155.1 (24)
Dbl. Pend. 11 (5) 22 (7) 0 (0) 9 (9)
Two Body 444 (3) 439 (11) 263 (92) 413 (53)
RPS 141 (23) 124 (23) 77 (15) 133 (18)
Pennies 79 (6) 164 (14) 118 (25) 141 (37)

Table 1: Number of future prediction steps with
reconstruction error below a small value ϵ (0.025),
known as Valid Prediction Time ‘VPT’ (± std. 3 runs),
on the Hamiltonian Dynamics Benchmark. We see
the LocoRNN combined with deep convolutional en-
coders is able to forecast diverse physical dynamics
accurately up to hundreds of steps, similar to state of
the art models such as Hamiltonian Generative Net-
works (HGN++), Neural ODEs (ODE), and LSTMs.

To validate the computational capabilities of our model,
we introduce a decoder gθ(z) = x̂, and train the pa-
rameters of this model (θ, w·, & b) with backprop-
agation through time (BPTT) to minimize a forward
predictive reconstruction loss L over sequences: L =∑T

t ||gθ(zt+1) − xt+2||22. In Table 1, we see that indeed,
as desired, our model achieves performance competi-
tive with state of the art on a complex physical system
forecasting benchmark, placing it in stark contrast to
existing traveling wave models. To validate the struc-
tured synchronous dynamics of our model, in Figure 1
we plot the hidden state over time with corresponding
input sequences (above) and reconstructions (below).
We see the model exhibits a diversity of well known
complex synchronous dynamics such as traveling and
standing waves for different datasets. Interestingly, the
model also exhibits no spatio-temporal structure of hidden dynamics when trained on random noise (bot-
tom right), or before training (not shown), suggesting the model has learned to leverage synchronous dy-
namics in the service of modeling spatio-temporally structured observations. Qualitatively, we further
observe that the training loss of the model dramatically decreases precisely when synchronous dynamics
appear to emerge. In future work, we intend to quantify this phenomenon more accurately.

Compared to existing RNN and spiking models of synchronous dynamics, our model inherits the provably
bounded hidden state and gradient magnitudes of the coRNN system, thereby ameliorating the exploding
& vanishing gradient problem and allowing BPTT to scale to much longer sequences. Further, distinct from
the original coRNN, the LocoRNN only contains local recurrent connections, reducing parameter complex-
ity while permitting the study of the spatio-temporally distributed processing. In summary, we believe our
model is the first to both exhibit complex wave phenomena and simultaneously remain a powerful train-
able sequence model, thereby presenting value as an investigative tool of such synchronous dynamics.

Figure 2: Orientation
selectivity (d ′ > 0.65) of
LocoRNN hidden neu-
rons z trained on simu-
lated retinal waves.

To exemplify this potential value, we perform a preliminary experiment to test the
hypothesis that spontaneously generated retinal waves contribute to visual system
topographic organization prior to visual experience (Wiesel & Hubel, 1974; Ackman
et al, 2012). Specifically, we train the model to reconstruct simple periodic sine
waves (depicted in Figure 1, top right), and then measure the orientation selectiv-
ity of each hidden neurons time-average response to static sequences of oriented
gratings using Cohen’s d metric (Cohen, 1988). In Figure 2 we plot the resulting
color/angle of maximal d value for each of the 72× 72 neurons (or a black x if all
d < 0.65). We see that the simulated retinal waves do appear to induce topographic
organization of orientation selectivity reminiscent of the orientation columns of
primary visual cortex. In relation to prior models of orientation columns (Swindale,
1982), our work does not presuppose the existence of orientation selectivity, but
rather it is absent at initialization and it is instead learned in conjunction with topographic organization.
On MNIST, we further see topographic organization of class-selectivity (not shown), suggesting a more gen-
eral method for topographic organization. Anonymized code and videos at: github.com/q2w4/LocoRNN
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