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Abstract

Traveling waves have been measured at a diversity
of regions and scales in the brain, however a con-
sensus as to their computational purpose has yet to
be reached. An intriguing hypothesis is that travel-
ing waves serve to structure neural representations
both in space and time, thereby acting as an in-
ductive bias towards natural data. In this work,
we investigate this hypothesis by introducing the
Neural Wave Machine (NWM) — a locally cou-
pled oscillatory recurrent neural network capable
of exhibiting traveling waves in its hidden state.
After training on simple dynamic sequences, we
show that this model indeed learns static spatial
structure such topographic organization, and fur-
ther uses complex spatiotemporal structure such
traveling waves to encode observed transforma-
tions. To measure the computational implications
of this structure, we use a suite of sequence clas-
sification and physical dynamics modeling tasks
to show that the NWM is both more parameter
efficient, and is able to forecast future trajectories
of simple physical dynamical systems more accu-
rately than existing state of the art counterparts.
We conclude with a discussion of how this model
may allow for novel investigations of the compu-
tational hypotheses surrounding traveling waves
which were previously challenging or impossible.

1. Introduction

In machine learning, inductive biases can be understood as
limiting the search space of possible hypotheses a priori, and
indeed, it is known that without any inductive bias, learn-
ing generalizations beyond the training data is theoretically
impossible (Wolpert, 1996). Modern machine learning re-
searchers have adopted many task-specific inductive biases
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Figure 1: Overview of the Neural Wave Machine. The input
sequence u is encoded with fy to act as a driving term in
the hidden state x which is modeled temporally (X) as a
network of locally coupled oscillators. The network is then
trained to reconstruct the input sequence: @ = gy(x). The
yellow arrows track a traveling wavefront over time.

almost by default, such as convolution for spatially struc-
tured data. Similarly, natural intelligence as implemented by
biological systems also has many inductive biases by virtue
of the diversity of constraints that it must simultaneously sat-
isfy such as metabolic efficiency. The fields of psychology,
cognitive science, and neuroscience have all studied these
biases and their observed signatures, often hypothesizing
about their computational implications.

One such observation which has recently gained increasing
interest in the neuroscience community is that of traveling
waves of neural activity. Such waves have been measured
at both local (Davis et al., 2020) and global (Muller et al.,
2016Db) scales, and have been shown to be strongly related to
alpha, theta, and gamma oscillations in a variety of brain re-
gions (Zhang et al., 2018; Besserve et al., 2015). Prompted
by these observations, a large number of theoretical hy-
potheses have been developed which attempt to explain the
computational purposes of traveling waves (Muller et al.,
2018), and the inductive biases which they may mediate.

Of particular relevance to the machine learning commu-
nity, one hypothesis is that traveling waves serve to bene-
ficially structure neural representations in both space and
time (Lubenov & Siapas, 2009; Jancke et al., 2004), act-
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ing as an inductive bias towards similarly structured natu-
ral data. Structured representations have been previously
demonstrated in the machine learning community to be
extremely valuable, making learning models both more effi-
cient and robust (Worrall et al., 2017). A prime example of
this is group equivariance (Cohen & Welling, 2016); in the
case of translation, this resulted in the convolutional neu-
ral network which reduced the sensitivity of existing fully
connected artificial neural networks to small image shifts
and deformations (Fukushima, 1980; Lecun et al., 1998),
thereby facilitating the rapid growth of the field of deep
learning (Krizhevsky et al., 2012). In the case of traveling
waves, it is thus suggested that they may facilitate a similar
kind of spatiotemporal structure in neural representations,
thereby granting the observed robustness and efficiency of
natural intelligence which is still lacking in modern deep
neural networks (Lake et al., 2017).

To date, however, testing ideas related to the computational
purposes of traveling waves has been challenging due to a
lack of neural network architectures which have a notion of
spatial locality necessary for modeling such spatio-temporal
dynamics. Further, existing networks which do have such
spatial structure often do not have temporal structure (Keller
et al., 2021; Lee et al., 2020), or are not sufficiently flexi-
bly parameterized to allow them to be trained on standard
machine learning benchmarks (Davis et al., 2021).

In this work, we propose to investigate the computational hy-
potheses surrounding traveling waves through a bottom-up
approach; we build a flexibly parameterized computational
model known to be capable of producing traveling waves,
and show that it indeed learns to exhibit complex spatiotem-
poral dynamics when modeling real data. We then show,
relevant to the computational neuroscience community, how
such a network indeed learns spatial and temporal struc-
ture reminiscent of that found in the brain. Specifically, we
observe that our network learns topographically organized
selectivity, similar to the observed orientation columns and
hypercolumns of the primary visual cortex (Wiesel & Hubel,
1974). Further, we show that our network learns to use com-
plex spatiotemporal organization such as traveling waves
to encode transformations by artificially inducing waves in
the hidden state and observing that this allows us to further
progress or reverse the transformations of generated images.

As it relates to inductive biases, we asses the computational
implications of the observed representational structure by
training the model on the physical dynamics forecasting
suite introduced in the paper ‘Which Priors Matter?” (Botev
et al., 2021). We see that our model is more accurate at pre-
dicting future trajectories of simple physical dynamics when
compared with existing state of the art models, providing
evidence that the structure mediated by traveling waves is
indeed a beneficial inductive bias for modeling such smooth

natural transformations. Further, due to our model’s local
connectivity, we see that it is more efficient both in terms
of parameters, and in terms of biological concerns such as
wiring length, suggesting a connection between locality of
connections, waves, and an inductive transformation bias in
biological systems.

Overall we believe our work offers the concrete contribution
of a new powerful model at the interface of computational
neuroscience and modern machine learning. We show that
this model allows for the investigation of the computational
hypotheses surrounding complex synchrony in the brain in
a new way, and further provides preliminary evidence for
the existing hypothesis that traveling waves serve to induce
spatiotemporal structure in neural representations.

2. Background

Structured Representations In machine learning, an in-
creasingly popular way to incorporate structure into neu-
ral networks is through equivariant architectures such as
group equivariant convolutional neural networks (Cohen
& Welling, 2016). Formally, a map f is equivariant if it
commutes with the transformation: f(7,[u]) = T',[f(u)],
where 7 and I are the representations of the action of the
group element p on the input and output spaces respectively.
At a high level, this can be understood to mean that for
a given set of input transformations of interest, there is a
corresponding known and well-behaved transformation of
the representations in output space. One of the simplest
and most well known examples of an equivariant map is the
convolutional layer; a translation of the input results in a
corresponding translation of the output feature maps. Such
models have been observed to improve sample efficiency,
generalization, and robustness both empirically (Fukushima,
1980; Cohen & Welling, 2016; Worrall et al., 2017; Veel-
ing et al., 2018; van der Pol et al., 2020) and theoretically
(Elesedy & Zaidi, 2021; Bordelon & Pehlevan, 2022) by
serving as an inductive bias towards representations with
naturally realistic symmetry. Despite their efficacy, however,
their application to more complex non-group transforma-
tions has been limited by the restrictions of the underlying
group theory. A recently developing research goal has thus
been to build equivariant maps for a broader range of trans-
formations, including models which aim to learn symmetries
from the data itself (van der Wilk et al., 2018; Bouchacourt
et al., 2021; Keller & Welling, 2021).

Traveling Waves in Neuroscience Neural oscillations
and traveling waves have long been a subject of study in
neuroscience and neurophysiology (Hughes, 1995; Muller
etal., 2018). Although such waves were originally measured
primarily in anesthetized subjects, improved multi-channel
recording and analysis techniques have recently demon-
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strated propagating wave activity in awake functioning sub-
jects as well, originating from both external stimuli and in-
ternal ‘spontaneous’ recurrent connections (Sato et al., 2012;
Muller et al., 2014; 2018). While many hypotheses have
been put forth for their precise computational role, a consen-
sus has yet to be reached. Example hypotheses include that
traveling waves may: influence visual perception (Zanos
et al., 2015); modulate information transfer (Besserve et al.,
2015); correlate with conscious awareness (Bhattacharya
et al., 2022b); facilitate predictive coding (Friston, 2019;
Alamia & VanRullen, 2019); lower the threshold for detec-
tion of weak stimuli (Davis et al., 2020); serve as a short
term memory (King & Wyart, 2021; Bhattacharya et al.,
2022a); or as a mechanism for the formation of long-term
memories during sleep (Muller et al., 2016a). Relevant to
this work, traveling waves have directly been implicated in
the encoding of motion (Heitmann & Ermentrout, 2020),
and have been measured to correlate strongly with perceived
perceptual illusions of motion (Jancke et al., 2004). Further,
it has been suggested that they form the basis of alpha and
theta oscillations (Zhang et al., 2018; Lubenov & Siapas,
2009) and may serve to both structure and integrate infor-
mation across space and time (Sato et al., 2012; Sato, 2022).
Due to the fundamental relationship between neural syn-
chrony and the coordination of spike timing (Bragin et al.,
1995), it is natural to wonder if more complex forms of
spatiotemporal synchrony such as traveling waves may play
a similarly more complex structural role.

Computational Models of Traveling Waves In the fields
of computational and theoretical neuroscience, multiple
models have been developed to help explain the observed
complex synchronous dynamics of neural systems. One
classical model is that of a network of locally coupled os-
cillators (Diamant & Bortoff, 1969; Ermentrout & Kopell,
1984). However, to date, such models have been limited
to those which either are built for the primary purpose of
analysis (Kuramoto, 1981; Ermentrout & Kleinfeld, 2001;
Davis et al., 2021), or those which perform very simple bi-
nary operations (Gong & van Leeuwen, 2009; Izhikevich &
Hoppensteadt, 2008), with neither set leveraging the flexible
computational capabilities of modern deep neural networks.
One line of work has aimed to integrate classical Kuramoto
models into deep neural networks by directly parameterizing
activations in terms of phase values (Ricci et al., 2021), how-
ever such models lack a notion of spatial locality, making the
existence of spatio-temporal dynamics less concrete. Most
recently, Davis et al. (2021) studied a large scale locally
connected spiking neural network model, quantifying the
conditions necessary for the emergence of traveling waves,
and showed such waves appeared to uniquely agree with
human cortical traveling waves in a variety of dimensions.
However, similar to most existing models in this category,
the model is formulated as a spiking neural network thus

requiring more sophisticated training mechanisms which
are yet to scale to the same performance as deep neural
networks (Neftci et al., 2019).

3. Neural Wave Machines

In the following section we introduce the Neural Wave
Machine (NWM), a deep neural network architecture which
exhibits traveling waves and other complex spatiotemporal
dynamics in the service of flexible differentiable compu-
tation. To achieve this, we take inspiration from the seminal
models of traveling waves built as networks of locally
coupled oscillators (Ermentrout & Kleinfeld, 2001), and
propose to integrate them into a modern deep learning
framework by taking advantage of the recently developed
coupled oscillatory Recurrent Neural Network (coRNN)
of Rusch & Mishra (2021).

3.1. Coupled Oscillatory Recurrent Neural Networks

In (Rusch & Mishra, 2021) the authors propose to solve
the Exploding and Vanishing Gradient Problem (EVGP) in
recurrent neural networks by defining a new recurrent neural
network with hidden state dynamics given by the parameter-
ized equations of a system of coupled, damped, and driven
oscillators. Explicitly, the hidden state of the recurrent neu-
ral network x is updated by solving the following second
order partial differential equation:

X=0(Wyx+W;x+Vu+b)—9x—ax (1)

Where % =X, % = x are the first and second derivatives
of the hidden state with respect to time, and u denotes the
input at each time step. The terms W, x, W%, and Vu can
then be interpreted as the coupling, damping, and driving
terms respectively. Finally, ¢ is a nonlinear activation func-
tion such as the hyperbolic tangent, and v & « are scalar
variables which can be fixed or learned in combination with
the above matrices. In practice, the above differential equa-
tion can be discretized and integrated numerically using
an IMEX (implicit-explicit) discretization scheme shown
to preserve the desirable bounds of the continuous system.
Such a discretization can be achieved by first introducing a
‘velocity’ variable v = X, turning the second order system
into a set of two coupled first order equations:

x=v, v=0(Wyx+W;v+Vu+b)—yx—av (2)
Then, for a fixed time step 0 < At < 1, the hidden state x
and velocity v of the RNN at time ¢ 4 1 can be updated as:
Xt+1 = Xt —|— At(vt+1) Vt+1 = V¢ —|— At(vé) (3)
v; = O’(szt + Wyzve + Vuey + b) — X —avey  (4)
This model was theoretically demonstrated to have a

bounded gradient and hidden state magnitude under as-
sumptions on the time-step At and the infinity norm of
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the coupling parameters. Empirically, such stable gradient
dynamics were shown to yield better performance than ex-
isting recurrent neural networks on tasks with very long
time-dependencies.

In relation to our goals, the oscillatory dynamics of the
coRNN make it amenable to synchronous activity, unlike
most existing deep neural network models, and the stable
gradient dynamics make it a powerful and flexibly param-
eterizable sequence model, unlike existing models of trav-
eling waves based on spiking neural networks. However,
given that the hidden state x is not endowed with any notion
of spatial layout, it is still not meaningful to study spatiotem-
poral dynamics in such a model. In the following subsection
we describe how such a spatial layout may be implemented
efficiently by replacing the fully connected recurrent cou-
pling matrices W, and W ; with convolution operations.

3.2. Local Connectivity

In (Davis et al., 2021), the authors study a large scale
spiking neural network model, quantifying the emergence of
traveling waves, and comparing them with waves observed
in the human cortex. At a high level, as it is relevant
to this work, the study concludes that locally restricted
connectivity and distance dependant conduction delays are
both necessary and sufficient to produce traveling waves.
Further they observe that such waves are fairly robust to the
synaptic strengths of their model when given a sufficiently
large number of neurons. Given these findings, we
hypothesize that the Coupled Oscillitory Recurrent Neural
Network may yield traveling waves if similarly constrained.

To impose such constraints we begin by defining an arbitrary
topographic layout for the /NV-dimensional hidden state x in
the model. For computational simplicity, we propose to use
aregular 1 or 2 dimensional grid, X1p € RE»*N or xop €
ROwxVNxVN respectively, where C}, is the number of si-
multaneous ‘channels’ in our hidden state. We then see that
specifically, if the recurrent connections W, and W are
made local over our spatial dimensions rather than global,
and a distance-dependant time-delay introduced, the afore-
mentioned constraints will be satisfied and the remainder of
the properties such as synaptic strength and the precise local
distribution of connections will be left up to the model to
learn. In practice, we simplify the model by restricting the
topographic connectivity of each neuron to its immediately
adjacent neighbors in the grid, and define all distances (and
thus time-delays) to these neurons to be equal to 1. Such a
simplification allows us to efficiently implement the local
time-delayed connections with a simple size 3 or 3 x 3 convo-
lutional kernel for 1 and 2 dimensional grids respectively. In
summary, our model is then given identically as in Equations
3 & 4 but with convolutional layers in place of the dense
recurrent matrices. Explicitly, in the 2-dimensional setting,

c RCh,XChXSXIS

for convolutional kernels w,., w; , we get:

vé =0 (Wg *xxt + Wi * v+ fo(usg1) + b) —yxe —ave  (5)

We see we have additionally replaced the linear encoder
V with a function f; which can be a convolutional or
‘de-convolutional’ neural network, or any other mapping
from the input to a spatially organized driving force. Impor-
tantly, we see that our imposed local connectivity does not
immediately invalidate any of the assumptions required for
the theorems of Rusch & Mishra (2021) about mitigating the
EVGP since the infinity norm of the weights is unlikely to
significantly increase when simply switching from fully to
locally-connected matrices. In the end, we denote this model
the Neural Wave Machine due to its emergent wave-like
dynamics, facilitated by both the oscillatory update equa-
tions of the coRNN, and the local connectivity constraints
of biological models. In the next section we measure these
desired spatiotemporal dynamics of the NWM and further
study their impact as an inductive bias on computation.

4. Experiments

In the following two subsections we provide experiments
which demonstrate: first, that our model learns spatiotem-
poral structure reminiscent of natural observations from
neuroscience; and second, that such structure is beneficial
to both efficiency and accuracy. We outline our methods
briefly below, and more thoroughly in Appendix A.

Methods All datasets used in this paper will be consid-
ered as unsupervised unless otherwise noted, and thus we
will train the model from Section 3 as an autoregressive
model. To do this, we add a learned decoder from the hid-
den state x; back to the input at the next timestep u;1, and
train the model with a mean-squared error loss. Explicitly,
Usyo = go(X¢1), and £ = [|[0y42 — uyio||3, where gp
is the decoder which can again be a convolutional neural
network, or any network which maps from the spatial hid-
den state back to the input space. For the simple tasks in
Section 4.1, and the sequence classification tasks of Section
4.2 we use minimal encoders and decoders corresponding to
single linear layers or small MLPs. For the more complex
physical forecasting tasks of Section 4.2 we use the baseline
deep convolutional encoders and decoders defined in the
benchmark. As a second minor addition which we observe
improves performance on long-term trajectory modeling
tasks, we introduce an additional encoder network which
learns to predict the initial conditions x and v of the net-
work given a partial ‘inference’ sequence. Explicitly, we
can write this as: xo, vo = f£°({u¢},%). Such an initial-
condition network is common in the Neural-ODE literature
(Chen et al., 2018), and in this setting helps to stabilize the
latent dynamics which would otherwise take a significant
number of iterations to reach their final magnitude.
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Figure 2: Plot of different datasets used in this work (top) and the associated learned hidden state dynamics (bottom). We
see the NWM learns different spatiotemporal structure for each dataset, and no structure when trained on random noise (a).
Additional videos of dynamics, and code for experiments, can be found at: https://github.com/gq2w4/LocoRNN.

Datasets To investigate the impact of modeling different
dynamics on the representations learned by our model, we
focus on three set datasets in this study. Most simply, we
first use a dataset of oriented sine functions (depicted in
Figure 2 b) with a slowly progressing phase over time steps.
This dataset is meant to be a very rough approximation to
the spontaneously generated retinal waves observed during
development (Ackman et al., 2012). For this dataset, the
wavelength and magnitude of the sine wave are fixed, and se-
quences are generated by randomly sampling an orientation
between 0 to 7 and then sequentially progressing the phase
by éTf for each timestep until two periods are complete. As
a second dataset, we borrow the rotating MNIST dataset
from the equivariance literature (Keller & Welling, 2021),
consisting of sequences of MNIST digits with each timestep
rotated by an additional %7? radians. This dataset serves
to allow us to investigate the existence of generalizable
spatio-temporal structure in a limited setting. Finally, for
more realistic dynamics, we make use of the recent hamil-
tonian dynamics suite (Botev et al., 2021). At a high level,
the benchmark consists of a diversity of tasks governed by
known equations of motion, including toy physics examples
such as idealized springs, pendulums, orbits, and double-
pendulums (Fig 2 ¢, d, e & h), as well as cyclic games (f &
g). Models are evaluated based on their ability to accurately
forecast dynamics into the future from a limited number of
inference frames.

4.1. Measuring Spatiotemporal Structure

To measure the spatiotemporal representational structure
that the NWM learns, and its alignment with natural struc-
ture, we start with the two simplest tasks: modeling simple
sine waves, and modeling rotating MNIST digits. We use
three separate methods for analyzing the representations
learned on these tasks: Cohen’s d selectivity metric (Cohen,
1988) to depict spatial organization, the Hilbert transform
to measure the instantaneous phase and velocity of putative
waves (Davis et al., 2020), and artificially induced traveling
waves combined with visualized reconstructions to measure
the approximate equivalence of latent traveling waves with
observed transformations.

Topographic Orientation Selectivity One of the most
common methods to demonstrate spatial organization of
neural representations is by measuring their selectivity with
respect to different features and plotting this with respect to
each neuron’s position (Hubel & Wiesel, 1974). As an initial
test of a basic form of selectivity, namely orientation selec-
tivity, we consider a hypothesis from the literature about
how such structure might arise initially in animals (Ackman
et al., 2012). Specifically, we investigate whether simple
periodic inputs, such as the spontaneous retinal waves ob-
served during early development, are sufficient to encourage
smooth topographic organization of orientation selectivity
when modeled by a minimal NWM. To test this, we train our
model on the simple sine waves dataset, and measure the ori-
entation selectivity of each hidden neuron’s time-averaged
response to a static 36-element sequences of oriented grat-
ings using Cohen’s d metric (Cohen, 1988). In Figure 3 we
plot the resulting color/angle of maximal d value for each
of the 72 x 72 neurons (or a black x if all d < 0.65). We
see that the simulated retinal waves do appear to induce
topographic organization of orientation selectivity reminis-
cent of the orientation columns of primary visual cortex
(Hubel et al., 1978). Outlined in white, we show a manually
identified *pinwheel” where selectivity for all orientations
meet, a hallmark of early visual system organization in
many species. In relation to prior models of orientation
columns (Swindale, 1982), our work does not presuppose
the existence of orientation selectivity, but rather it is absent
at initialization and it is instead learned in conjunction with
topographic organization.

General Topographic Organization On the right of Fig-
ure 3, we show the spatial structure of feature selectivity for
a network trained on rotating MNIST digits instead. Specif-
ically, we plot the image from the MNIST dataset which
maximally activates each neuron in our 2-dimensional hid-
den state (at the final timestep). We see that neurons are
organized with respect to digit class and style, but also ori-
entation, implying that activity is likely to travel over these
paths as a traveling wave for observed rotation transforma-
tions. Such structure is reminiscent of the higher level cate-
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Figure 3: (Left) Plot of orientation selectivity of each NWM
hidden neuron x after training on simple sine waves. (Right)
Plot of the maximum activating image for a subset of NWM
hidden neurons after training on the rotating MNIST dataset
(See Sec. B.1 for full). We see the NWM learns smooth
spatial topographic structure tailored to the input dataset.

gory selectivity of the ventral temporal cortex (Kanwisher
etal., 1997; Khosla et al., 2022), and also the temporal struc-
ture observed to be related to theta oscillations and waves
in the hippocampus (Lubenov & Siapas, 2009).

Instantaneous Phase and Velocity Next, we demonstrate
that the proposed model indeed exhibits full spatiotemporal
structure beyond static spatial structure. Compared with bio-
logical neural networks, it is easy for us to directly visualize
the spatio-temporal activity of our network and qualitatively
validate the existence of structure. Figures 1, 2, and 4 pro-
vide such examples, while additional samples can be found
in the Appendix. Further example videos can be found in
the supplementary material or the github repository. For ad-
ditional rigor, however, we borrow state of the art methods
from neuroscience to directly compute the instantaneous
phase and velocity of putative waves from noisy real-valued
signals. Specifically, we follow the work of (Davis et al.,
2020) and compute the ‘generalized phase’ of a real valued
signal x(t) by first transforming the signal to a complex-
valued analytic signal x,(¢) through the Hilbert transform
‘H and then taking the complex argument of this signal as
the phase ¢(t) at each point in space and time. Formally:
Xq(t) = x(t) + 1H[x(t)], and ¢(t) = Arg[x,(t)]. Finally,
wave velocities can then straightforwardly be computed us-
ing the spatial gradient of this phase: v = —V ¢. In Figure
4 we depict such phases and velocities for the NWM trained
on the rotating MNIST task. We see that, in alignment with
expectation, the estimated phases have a spatially periodic
pattern which oscillates with sequence length, while the es-
timated velocities similarly align to point in the downward
direction after training (but not before training, as outlined
by the disjoint velocity vectors in Figure 4 top right).

Controlled Generation with Induced Traveling Waves
One of the benefits of structured representations in genera-
tive models is that they allow for controlled generation of
new observations by taking advantage of the known latent
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Figure 4: (Left) Plot of hidden state x (top), generalized
phase ¢ (mid), and estimated wave velocity —V ¢ (bot)
over the course of a transformation sequence 7' = 0 to 3.
A small gold star moves along with a wave front, relative
to a stationary grey triangle, both added to help track the
approximate peak of a traveling wave in the hidden state.
(Right) Estimated wave velocity before and after training.

operator for a desired input transformation. In this section
we demonstrate that such controlled generation is indeed
similarly possible by artificially inducing traveling waves in
the NWM hidden state, thereby evidencing the spatiotem-
poral structure of its representations. Given the high degree
of flexibility of the potentially emergent wave dynamics
of the 2-D system presented in Figure 4, we concede that
two restrictions must be placed on the model in order for
us to be able to accurately induce waves which match those
the model has learned. Explicitly, we first define the la-
tent space to be a set of disjoint 1-dimensional tori such
that learned wave propagation will be restricted to a single
axis. Secondly, we restrict our topographic coupling to be
1-directional by masking out all weights except for one (non-
central weight) in our convolutional kernel which is shared
over all tori. In combination, these restrictions ensure that if
traveling waves are learned by the model, they will likely
be able to be approximately modeled by solutions to the
1-dimensional 1-way wave equation: y(x,t) = f(z — vt).

In Figure 5 we depict the results of this experiment. In
detail, we train the 1D NWM described above on a dataset
of length T" = 18 sequences of rotating MNIST digits. At
test time, we encode a full sequence (left) and take the final
hidden state x7 as the initial state for our system. We then
induce a traveling wave in the hidden state in the reverse
direction of the instantaneous velocity. In practice, since
we have limited our system to 1-dimensional tori, this
corresponds to sequentially cyclically shifting (or linearly
interpolating) activations across the spatial dimension of
each circular subspace according to the inverse of our
assumed velocity. The result in Figure 5 (right) shows that
indeed by inducing such reverse traveling waves we can
then decode the original input sequence, and even predict
elements before the start of the sequence (highlighted in
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Figure 5: Visualization of controlled generation with induced traveling waves. An input sequence from ug to ur (left) gets
encoded to a hidden state x7. We then induce a traveling wave in the opposite direction of the estimated instantaneous
velocity and observe we can decode back to the original input Gy (highlighted yellow, right). Furthermore, we see by
continuing the wave, we can continue the transformation past the bounds of the input sequence (highlighted pink, right).

pink). Such sensible decodings highlight the generalization
power of the representational structure learned by the
NWM. In this example we propagate waves with assumed
velocity v = 1 and observe that this is slightly faster
than the ground truth transformation, resulting in a return
to the start state in 14 steps rather than 18. Additional
transformations can be found in Appendix Figure 9.

4.2. Computational Implications of Structure

Given the structure measured in Section 4.1 is known to
be related to beneficial inductive biases (Fukushima, 1980;
Keller & Welling, 2021), in this section we perform prelimi-
nary experiments to measure such potential benefits in the
context of sequence modeling.

An Inductive Bias for Simple Physical Dynamics First,
inspired by the literature relating traveling waves to visual
motion perception (Jancke et al., 2004) and spatiotemporal
structure in the hippocampus (Lubenov & Siapas, 2009), we
hypothesize that the spatiotemporal structure of the NWM
demonstrated in Section 4.1 may serve as an inductive bias
towards simple physical dynamics. To measure this, we train
NWM models on a representative subset of the hamiltonian
dynamics suite, and measure their error when attempting to
forecast long test trajectories into the future. Specifically,
we consider six distinct dynamic modeling tasks: three sim-
ple physical dynamics including the pendulum, spring, and
two body gravitational tasks; one less physical but still tem-
porally smooth task, namely the matching pennies task; and
the last, the double pendulum, a complex chaotic physical
dynamics task. We compare performance of the NWM with
the state of the art baselines and optimal hyperparameters di-
rectly given in prior work (Botev et al., 2021; Higgins et al.,
2021). These include the HGN++ (Higgins et al., 2021), a
standard autoregressive model (AR) (Hochreiter & Schmid-
huber, 1997), and a Neural ODE (Chen et al., 2018) trained
both forwards and backwards in time (ODE [TR]). We ad-
ditionally include a final globally coupled coRNN baseline
with equivalent parameters to our NWM to study the di-
rect impact of the imposed structure on model performance.
In Table 1 we see that, in alignment with our intuition,
the NWM models achieve the lowest forecasting error on
the simple physical dynamics tasks, providing evidence in
support of the hypothesis that the observed spatiotemporal

structure of Section 4.1 is benneficial for modeling such sys-
tems. Further, we see that the coRNN baseline performs the
best on the less physical but predictable matching pennies
task, while the maximally flexible Neural ODE performs
the best on the chaotic double pendulum task.

Efficiency As a second potential benefit related to the
NWM’s demonstrated spatiotemporal structure, our neu-
ral wave machines are highly parameter efficient by de-
sign when compared to the globally coupled coRNN. As
explained in Section 3, the recurrent connections of our
model are restricted to be entirely local as implemented by
the convolution operation, thereby allowing for arbitrarily
large hidden state sizes with a constant number of recurrent
parameters, significantly improving over the quadratically
increasing number of parameters in the coRNN. In Table
2 we see that on the canonical long sequence classification
tasks of sequential MNIST (sMNIST) and permuted sequen-
tial MNIST (psMNIST) (Rusch & Mishra, 2021), our model
achieves comparable performance with the coRNN (and
thus existing state of the art) while requiring a fraction of
the parameters. Interestingly, efficiency in terms of wiring
length is also implicated in the formation of orientation
columns in natural systems (Koulakov & Chklovskii, 2001).
We believe that our work reinforces this relationship from
another perspective by showing that when a recurrent os-
cillatory computational system is constrained to be wiring
length efficient by design, it naturally learns topographic
organization (e.g. Figure 3) in order to optimally function.

5. Discussion

In this work we introduce the Neural Wave Machine, a
recurrent neural network model shown to learn spatiotempo-
rally structured representations through local connectivity
and oscillatory dynamics. We propose this model as a
rich testing ground for the diversity of computational
hypotheses surrounding traveling waves in the neuroscience
literature, and demonstrate its potential value in this regard
by providing evidence for a variety of hypotheses, including
one relating to the origin of orientation columns, and one
relating to a simple physical inductive bias. Further, we
show that this model is competitive with state of the art
on sequence modeling tasks, hoping to encourage future
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Table 1: Forward extrapolation mean squared reconstruction error on the Hamiltonian Dynamics Benchmark (displayed in
units of 1 x 10~8). We see, in alignment with intuition, the 1 and 2-dimensional Neural Wave Machines (NWM 1D & 2D)
perform best on simple physically realistic dynamics such as the spring, pendulum, and two body problem. The globally
coupled coRNN performs best on the smooth, but non-physical, matching pennies task, while the maximally flexible Neural
ODE performs best on the highly complex and chaotic double pendulum task.

AR HGN++ ODE coRNN NWM2D NWM 1D
Spring 20.97 1.58 1.58 2.52 5.46 1.45
Pendulum 4,208.0 166.5 166.0 548.0 110.9 237.2
Two Body 91.4 5.0 4.2 2.0 1.9 0.9
Pennies 126.3 190.0 119.3 28.2 47.2 43.1
Double Pendulum  3,905.0 1,531.0 1,296.0 1,666.0 2,512.0 2,821.0
use of such models to study the computational purpose of =~ Limitations In this work we have put significant effort

spatiotemporal dynamics in natural systems.

Related Work In recent years, multiple works have at-
tempted to integrate topographic organization in deep neural
networks for various purposes including learning general-
ized invariance (Kavukcuoglu et al., 2009), learning gener-
alized equivariance (Keller & Welling, 2021) or for develop-
ing more accurate models of the development and structure
of natural systems (Lee et al., 2020; Doshi & Konkle, 2022;
Blauch et al., 2022). Other work has studied the tempo-
ral aspects of neural activations and attempted to integrate
such structure into deep neural networks. For example, re-
searchers have studied the integration of recurrence into feed
forward classification networks (Kietzmann et al., 2019),
or the integration spike-time coding through complex acti-
vations (Lowe et al., 2022). Separately, others have aimed
to directly integrate natural architectural biases by fixing
early layers of a convolutional neural network to mimic
the early stages of the natural visual stream, ultimately re-
sulting in improved robustness (Dapello et al., 2020). Our
work is highly related to these efforts in motivation, but
largely unique in terms of methodology and its focus on
complex spatiotemporal dynamics such as traveling waves.
One class of models which shares some relation intuitively
is reservoir computing (LukoSevicius & Jaeger, 2009). A
primary difference between the NWM and reservoir comput-
ing frameworks is that our network has a significant number
of learned parameters within its recurrence that mediate
complex hidden dynamics, while prior work typically relies
on a reservoir of fixed dynamics.

Table 2: Accuracy on supervised sequence benchmarks. All
results are mean =+ std. over 3 random initalizations.

SMNIST psMNIST
Acc. #0 Acc. #0
coRNN 99.1+0.1 134k 950+24 134k
NWM 986+03 50k 948+1.1 50k

into quantifying the existence of complex spatiotemporal
structure and its impact on the NWMs computational per-
formance. However, due to the inherent flexibility of the
possible dynamics which may emerge, there remain limita-
tions in our ability to due so. In future work, we would hope
to be able to get a more concrete metric corresponding to
spatiotemporal structure to better correlate the structure of
our models with their performance. Furthermore, on tasks
such as forecasting dynamics, it is still an open question
how to best compare the performance of such models in
the most comprehensive and fair manner (Higgins et al.,
2021). Finally, our explorations of parameter efficiency are
inherently preliminary and use fully connected encoders
and decoders in the NWM, ultimately contributing 45k of
the 50k parameters noted for the NWM in Table 2. If we
were able to replace these components with similarly locally
connected functions, such as convolutional networks, the
parameter efficiency would further dramatically increase.

Conclusion As a flexible computational model of travel-
ing waves, we believe the NWM framework offers signifi-
cant potential to the computational neuroscience community
as a method for testing other computational hypotheses re-
lating to traveling waves and synchronous neural dynamics
broadly. Similar to convolutional neural networks for mod-
eling the visual system (Yamins et al., 2014; Cadieu et al.,
2014; Kanwisher et al., 2023), neural wave machines do not
match all biologically relevant details of neural dynamics,
but we believe they may capture sufficient abstract proper-
ties to be useful for performing investigations that otherwise
wouldn’t be possible. Examples of initial hypotheses which
we believe would be primarily suited for future study would
be the use of traveling waves as a short term memory mech-
anism (Bhattacharya et al., 2022a), or as a mechanism for
sequencing actions (Sato, 2022). Ultimately, we believe
this work suggests that complex spatiotemporal dynamics
and structure should be investigated further in the future to
develop the next set of inductive biases necessary to bring
deep neural networks to the same levels of efficiency and
robustness that we see in natural intelligence.
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A. Experiment Details

Videos of traveling waves and code to reproduce all experiments in the paper can be found at the following anonymized
github repository: https://github.com/g2w4/LocoRNN. Additional videos of latent dynamics can be found in the
separate supplementary material folder.

The code is built as extensions of three existing public repositories, allowing us to reproduce all baseline results
from the original authors’ code. Specifically, we make use: (I) The coRNN repository (https://github.com/
tk—-rusch/coRNN) for the supervised sequence experiments, (II) The Topographic VAE repository (https://
github.com/akandykeller/TopographicVAE/) for the rotating MNIST experiments, and (III) The Deep-
Mind Physics Inspired Models repository (https://github.com/deepmind/deepmind-research/tree/
master/physics_inspired_models) for the Hamiltonian Dynamics Suite Experiments.

A.1. Sequence Classification

The efficiency experiments from Section 4.2 were performed by modifying the published code for the original coRNN
(Rusch & Mishra, 2021) to incorporate the local connectivity constraints outlined in the main text. All hyperparameters were
thus set to the defaults in the published code which matched the optimal hyperparameters stated by the authors to be found
from a grid search on each dataset independently. The baseline coRNN values in Table 2 are thus simply from re-running
the original authors code, and we observe similar values to those published in (Rusch & Mishra, 2021). We acknowledge
that running a separate grid search for the NWM models may be beneficial to their performance but we were unable to do
so due to time and computational constraints and thus leave this to future work. In practice we found the original coRNN
parameters worked well enough to give an initial intuition for the relative performance of the NWM.

For the NWM, the topology of the hidden state was defined to be a regular square 2D grid with side lengths equal to square
root of the default hidden state size (or the integer floor of the square root for non-perfect-square values). Each neuron was
defined to be connected to its immediate surrounding 8 cells in the grid, in addition to a self-connection. The boundary
conditions of the topology were defined to be periodic (implemented through circular padding) such that the global topology
was that of a 2-dimensional torus. The recurrent local coupling parameters were shared over all spatial locations of the
grid, allowing the above local connectivity to be implemented as a periodic convolution with a kernel of size 3 x 3. We
noted that increasing the number of channels in the convolutional layers dramatically improved performance, and thus
for the NWM models in Table 2 we use 16 channels in the hidden state. This yeilded a parameter count computation of:
#0 =1x256 x 16416 x 16 x 3 x 3 x 24 256 x 16 x 10 = 49, 664.

A.2. Rotating MNIST and Sine Waves

The experiments on measuring spatiotemporal structure using MNIST and simple sine waves were performed by modifying
the published code for the Topographic VAE (Keller & Welling, 2021) to introduce our proposed NWM in place of the
‘shifting temporal coherence’ construction of the topographic Student’s-T variable in the original paper. To achieve this, the
encoder and decoder (fy & gg) were implemented as a variational autoencoder (Kingma & Welling, 2014) with a standard
Gaussian prior and Bernoulli distribution for the likelihood of the data. Practically, this was achieved by setting the output
dimensionality of the encoder fy to twice the hidden state dimensionality, defining half of the outputs as the posterior mean
g, and the second half as the log of the posterior variance og. We additionally found that applying Layer Normalization
(Baet al., 2016) (denoted LN) to the output of the encoder helped increase convergence speed. Explicitly, the model can
thus be described as:

Zep1 ~ Qo(Zeg10rg1) = N (2Zeq1; 19 (0r41), 06 (ugpr)I), Zy1 = LN(2z¢41) (6)
Virl = Vi + At(a (W xXt + Wi % Ve + VZipg +b) — yxp — avt) @)
Xpp1 = X¢ + At (Vig1) @
po(utt2|go(xe+1)) = Bernoilli(ug42; go (X¢41)) ©)

Where the objective is then computed by averaging the evidence lower bound (ELBO) over the length of the sequence:

T
Z B, ~go (ze|ue) (108 Do (Wig1]90 (%¢)) — Dic1[qo(2¢|we)|[pz (24)]) (10)

t=1

1
L(uy.7;0) = T
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The initial conditions for the NWM were then given by simply setting the initial position equal to the first encoder output,
and the initial velocity to zero, i.e. xg = Zg & vg = 0. Although we did not test the MNIST experiments with a deterministic
autoencoder, we note that traveling waves can also clearly be seen in the hidden states of the deterministic models presented
in Sections 3 and 4.2 (as visualized in Figure 2 and the supplementary material), implying that the variational formulation is
not necessary for the emergence of traveling waves.

For the experiment depicted in Figure 4 of Section 4, we used a simple linear encoder and decoder, and a hidden state
dimensionality of 1296 reshaped into a 2D grid of shape 36 x 36. As in the rest of the paper, our topographic connectivity
was implemented using a convolutional kernel of shape 3 x 3 shared over all elements of the grid, with circular padding
to enforce periodic boundary conditions on the grid. For training, we presented the model with length 18 sequences of
MNIST digits rotating at 20 degrees per step (thus completing a full period per training sequence). At test time, to create
the visualization in Figure 4, we increased the sequence length to 72 elements (or four periods) and visualize a portion
of the final period, allowing the system to reach a steady state of wave activity for better visualization. We see that despite
not being trained on such long sequences, the NWM is able to generalize and maintain wave activity. For computing the
generalized phase, we set use a 4-th order butterworth bandpass filter with bounds set at 0.2 and 0.4 of the Nyquist frequency.
As hyperparamters for training, we used standard SGD with momentum of 0.9, a learning rate of 2.5 x 10~*, and a batch
size of 128 for 50 epochs. Following the suggestion outlined in (Rusch & Mishra, 2021), we allowed the parameters v, o, &
At to be learned during training by initializing them to At = ¢=1(0.125) = —1.95, v = 1.0, & o = 0.5 and then applying
appropriate activation functions to keep them within the desired bounds (e.g. sigmoid, ReLU, & ReLU respectively). These
hyperparameters and initalization values were determined by implementing a simple toy version of the model with random
data and random weights and manually altering parameters to determine the ranges for which coherent wave dynamics
were likely to emerge. We note that the properties of the emergent waves appear qualitatively different for different random
initalizations of the model. Specifically the wavelength and velocity of the waves appears to vary greatly from run-to-run.
We show a few of these different learned dynamics in the additional results section below.

For the experiment depicted in Figure 5 of Section 4, we used a 3-layer Multi-Layer Perceptron (MLP) for the both encoder
and decoder, and a hidden state of dimensionality 1296 reshaped into a set of 24 disjoint 1-D tori (circles) each composed of
54 neurons. We implemented topographic coupling between the immediate neighbors on each circle via a 1-dimensional
convolutional kernel of size 3 with circular padding. We then implemented the uni-directionality constraint outlined in the
main text be masking the first two elements of the kernel to 0, yielding a kernel with a single trainable parameter explicitly
connecting each neuron with its neighbor directly to one side. For training, the dataset and hyperparameters all remained
the same as in Figure 4 described above, however the batch size was reduced to 8 for quicker evaluation. We found that
additionally adding another layer normalization layer between recurrent steps improved the consistency of the learned waves
and thus allowed us to simulate them more accurately at test time. Explicitly this amounted to modifying Equation 8 to:
X¢+1 = LN (xt + At (vig1) ) Furthermore, to ensure consistency of waves across each circular subspace separately, we
shared the bias vector b across each subspace. To induce a traveling wave in the hidden state of the network and thereby
generate the transformation sequence shown in the bottom row of the figure, we first encode the input sequence (shown in
the top row), using the equations outlined in this section. We take the final hidden state of the network (x7) as the initial
state from which we begin the wave propagation. Then, across each 1-D circular subspace of the hidden state, we update the
values of the hidden state based on the 1-D 1-way wave equation y(x,t) = f(xz — vt) for a velocity v = 1 for time ¢t = 1
to 18. Written in terms of the hidden state x;, we can effectively propagate waves backwards through the hidden state by
moving activation from one spatial location [ to a location shifted by vA¢t: x7(I) — x7 (I — vAt). Practically, this amounts
to sequentially circularly shifting the hidden state activation across each circular subspace as depicted in Figure 5.

A.3. Hamiltonian Dynamics Suite

The experiments in Section 4.2 were performed using the DeepMind Physics Inspired Models and Hamiltonian Dynamics
Suite, implemented in JAX, as a starting point. All values reported for the baselines (HGN++, AR, and ODE [TR]) were
thus obtained by re-running the original code with the hyperparameters stated in (Botev et al., 2021). Specifically, for the
HGN++, we trained the model both forwards and backwards in time, including over the inference steps, with a final beta
value of 0.1 in the ELBO. For the AR model, we used an LSTM with all other paramters default. For the ODE, we used the
default parameters with forwards and backwards training, again including inference steps. The only change to the default
hyperparamters for all three models was to reduce the batch size to 8 per GPU (thus 32 total per iteration) to fit on our GPUs.

The coRNN and NWM architectures were added as extensions to the auto-regressive model already implemented in library.
They thus made use of all the same default hyperparameters, with the only changed values being the aforementioned
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reduced batch size, an increased number of inference steps (31), an increased number of target steps (60), and an increased
hidden state size (23 x23). The increased number of inference and target steps was found useful to improve performance
on more chaotic tasks such as the pendulum where the the accuracy of the initial state is hugely important to the model
forecasting performance. Additionally, we note that these values are within the values searched by the grid search of the
authors in (Botev et al., 2021) making their use here for comparison relatively fair. The size of the hidden state was picked
as the largest which fit in our GPU memory across all devices. The values of «, 7, and At were initialized to the same
values as the MNIST experiments described above, and were again allowed to be updated during training simultaneously
with the other model parameters. For the 2D NWM, the hidden state topology was again defined to be a 2D torus of size
(23%23) implemented through periodic convolution with a 3 x 3 kernel. The 1D NWM topology was similarly composed
of 23 disjoint 1D circles each with 23 neurons, again implemented with periodic convolution with a 1 x 3 kernel. The
coRNN and NWM models additionally used a separate initial condition network to initialize xo and vg. This network was
implemented as a GRU with a hidden state of size 2 x 23 x 23 which ran backwards over the inference sequence (length 31)
first embedded with the model encoder fy. The final hidden state of the model was then split in half and taken to initialize
the inital positions and velocities of the coRNN & NWMs.

All models make use of the same deep convolutional encoder with ReLLU activations and a similarly deep convolutional
spatial broadcast decoder as in the original work. They were similarly all trained for 500,000 iterations to match the original
work.

A.4. Hardware Details

All models were run on a cluster across roughly 8 NVIDIA GeForce 1080Ti GPUs, 8 NVIDIA GeForce 980Ti GPUs, and 8
NVIDIA Titan X Gpus. Each model in Table 1 thus required roughly 6-8 GPU days to train to the final number of iterations.



Neural Wave Machines

B. Extended Results

B.1. Full Rotating MNIST Topographic Organization
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Figure 6: Depiction of the maximum activating image for the full set of neurons in the NWM when training on Rotated
MNIST. The subset depicted in Figure 3 is highlighted in yellow. We see that topographic organization is widespread and

roughly continuous throughout the hidden state.
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B.2. Visualizing Traveling Waves on MNIST

Figure 7: Additional hidden state visualizations for the model in Figure 4. Reconstructions (Top), Hidden state (middle) and
generalized phase (bottom), for the final 18 timesteps of the test sequence.

Figure 8: Visualization of the hidden state and phase for three models identical to those in Figure 4, but with different
random initalizations. We see that the models learn different wavelengths and velocities depending on their initialization.



Neural Wave Machines

\\NN~—_-~// | \\NN~—~/7/ |
|l \\N~N~—=~/ /) 1 \\ N~~~/

1710 0NNl L VNN 27
7 A< Z L b VNN 2
72AaNV /=Nl 724299 D

AR Ssdbbvyvyyvyansn e
TTAAGREEIIS L LYY »
AR R EE Y NEEERR

O000Q0QQQO0OCCUO0ODODODOOOD
O0000QQCCCUOOOOOD
O00000CCCOOO0OODDODO00C0

Figure 9: Additional visualizations of reconstructions from induced wave activity in the hidden state of the 1D NWM as
depicted in Figure 5. We show a set of random input sequences (top), the original model reconstruction (middle), and images
generated by sequentially propagating the initial state backwards by an induced wave and decoding at each step (bottom).
We see that, as in the main text, the assumed wave velocity of v = 1 is slightly faster than the actual velocity, and thus the
reconstructed transformations are slightly faster than the input transformations. Because of this, we also observe that for
certain examples, the induced wave reconstructions lose consistency with the input after the first period. This appears to
imply that both the initial location of the wave activity matters in addition to its wave properties, and thus our model has
learned to only propagate waves over parts of the feature space to optimize the capacity of the hidden state for this dataset.
Finally, we observe that the induced transformations occur in reverse order due to the fact that our induced waves propagate
in the reverse direction to those naturally exhibited for training examples, effectively propagating backwards in time.




