
Leren 2020 sample exercises week1

1 Partial Derivatives

What does it mean to build the partial derivative of a multivariate function?
Direction of steepest descent in one direction

Take the the partial derivative w.r.t. x, y, and z of

f(x, y, z) = 2 ln(y − exp(x−1)− sin(zx2))

∂f(x, y, z)

∂x
=

2

(y − exp(x−1)− sin(zx2))
(− exp(x−1)(−x−2)− cos(zx2)(2zx))

∂f(x, y, z)

∂x
=

2(exp(1/x)/x2 − 2zx cos(zx2))

(y − exp(x−1)− sin(zx2))

∂f(x, y, z)

∂y
=

2

(y − exp(x−1)− sin(zx2))

∂f(x, y, z)

∂z
=

2

(y − exp(x−1)− sin(zx2))
(−cos(zx2)x2)

∂f(x, y, z)

∂z
=

−2x2cos(zx2)

(y − exp(x−1)− sin(zx2))
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2 Normal Distribution

Suppose we want a probability density function for the length of all adults
alive today. We get a sample of lengths of N adults as measuring everyone is
impractical. We make sure the sample is independent and identically distributed
(iid), so for example we don’t over-represent tall Dutch adults. This gives us
our data:

X = {xt}Nt=1 (1)

Suppose we assume the length of adults is normally distributed (the Gaussian
distribution, the famous bell curve). Note that this is merely an assumption
and may not be the best choice (for example when there happens to be a large
group of short adults, a large group of tall adult, but not so many medium
length adults). This gives us our density function:

N (µ, σ) =
1√
2πσ

exp

[
− (x− µ)2

2σ2

]
(2)

with sufficient statistics:

µ ≡E(X), the expected value of X (mean of X) (3)

σ2 ≡V ar(X), the variance of X (4)

Because we haven’t measured everyone and just use a sample we can only
estimate µ and σ by respectively m and s. You probably remember you can
simply compute these as:

m =

∑N
t=1 x

t

N
(5)

s2 =

∑N
t=1(xt −m)2

N
(6)

These are given in paragraph 4.3.2 in equation 4.8 in “Introduction to Ma-
chine Learning 3rd ed, Ethem Alpaydim”. Now show that these are indeed the
correct Maximum Likelihood Estimations.

2.1 Maximum Likelihood Estimation (MLE)

With Maximum Likelihood Estimation we want to find the parameter values
that give the highest likelihood given the data. Often we can use the following
steps for this:
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1. Write down the likelihood function that we want to maximize.

l(m, s|X) = P (X|m, s) =

N∏
t=1

1√
2πs

exp

[
− (xt −m)2

2s2

]
(7)

2. Take the log() of this function when this makes it easier to take the deriva-
tives w.r.t. the parameters (and it does in this case!). This is valid be-
cause the log() function is monotonically increasing and therefore the x
that maximizes log(f(x)) will also maximize f(x).

L(m, s|X) = log(l(m, s|X)) (8)

= log

(
N∏
t=1

1√
2πs

exp

[
− (xt −m)2

2s2

])
(9)

using: log(ab) = log(a) + log(b)

=

N∑
t=1

log

(
1√
2πs

exp

[
− (xt −m)2

2s2

])
(10)

using: log(ab) = log(a) + log(b)

=

N∑
t=1

log

(
1√
2πs

)
+

N∑
t=1

log

(
exp

[
− (xt −m)2

2s2

])
(11)

using: log(exp(a)) = a

=N log

(
1√
2πs

)
+

N∑
t=1

[
− (xt −m)2

2s2

]
(12)

using: log(ab) = log(a) + log(b)

=N log

(
1√
2π

)
+N log

(
1

s

)
− 1

2s2

N∑
t=1

(xt −m)2 (13)

using: log(ab) = b log(a)

=−N log(
√

2π)−N log(s)− 1

2s2

N∑
t=1

(xt −m)2 (14)
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3. Take the partial derivative with respect to each parameter.

∂L(m, s|X)

∂m
=
∂ −N log(

√
2π)−N log(s)− 1

2s2

∑N
t=1(xt −m)2

∂m
(15)

=
1

2s2

∑N
t=1 ∂

[
(xt −m)2

]
∂m

(16)

using: chain rule

=
1

2s2

∑N
t=1 ∂

[
(xt −m)2

]
∂(xt −m)

∂(xt −m)

∂m
(17)

=− 1

s2

N∑
t=1

[
(xt −m)

]
(18)

∂L(m, s|X)

∂s
=
∂ −N log(

√
2π)−N log(s)− 1

2s2

∑N
t=1(xt −m)2

∂s
(19)

=
∂ −N log(s)− 1

2s2

∑N
t=1(xt −m)2

∂s
(20)

using: ∂log(a)
∂a = 1

a

=− N

s
+

1

s3

N∑
t=1

(xt −m)2 (21)

4. Set the derivatives to 0 and solve for each parameter. When the derivatives
can be reduced to second degree (parabola) or lower polynomial functions
w.r.t. the parameters this will give us the values that maximize the Like-
lihood function. Later we will see techniques to deal with more complex
functions.

− 1

s2

N∑
t=1

[
(xt −m)

]
=0 (22)

assuming: − 1
s2 6= 0

N∑
t=1

[xt]−Nm =0 (23)

m =

∑N
t=1 x

t

N
(24)
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−N
s

+
1

s3

N∑
t=1

(xt −m)2 =0 (25)

−
Ns2 +

∑N
t=1(xt −m)2

s3
=0 (26)

assuming: s3 6= 0

s2 =

∑N
t=1(xt −m)2

N
(27)

3 Vector Derivatives and Gradients

In this problem, we will compute basic derivatives of scalars and vectors with
respect to vectors. Although these can look simple on the surface, the details
and conventions are worth explicitly restating since the results can be somewhat
counter-intuitive and are fundamental to modern machine learning (and your
homework).

First, given two column vectors y ∈ Rm and x ∈ Rn, we can write them
explicitly as:

y =


y1
y2
...
ym

 =
[
y1 y2 . . . ym

]T
& x =


x1
x2
...
xn

 =
[
x1 x2 . . . xn

]T

We then (according to accepted convention) define the the derivative of the
vector y with respect to the vector x to be given by the matrix:

∂y

∂xT
=
[

∂y
∂x1

∂y
∂x2

. . . ∂y
∂xn

]
=


∂y1

∂x1

∂y1

∂x2
. . . ∂y1

∂xn
∂y2

∂x1

∂y2

∂x2
. . . ∂y2

∂xn

...
...

. . .
...

∂ym

∂x1

∂ym

∂x2
. . . ∂ym

∂xn

 (28)

We note the choice of notation here ∂y
∂xT correctly implies that the derivative

is with respect to the transpose of x. Although many mathematics texts drop
this transpose in notation (and instead simply use the notation ∂y

∂x ), the vector
derivative is always defined as the m× n matrix given above.

We can see this definition yields the desired result that the derivative of a
vector with respect to itself is the identity matrix (as is very useful when using
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the chain-rule):

∂x

∂xT
=


∂x1

∂x1

∂x1

∂x2
. . . ∂x1

∂xn
∂x2

∂x1

∂x2

∂x2
. . . ∂x2

∂xn

...
...

. . .
...

∂xn

∂x1

∂xn

∂x2
. . . ∂xn

∂xn

 =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 = I (29)

We further note, importantly, that the gradient of a vector function of f(x) :
Rn → Rn with respect to a vector x is conventionally defined as the transpose
of the vector derivative, i.e.:

∇xf(x) =
[
∂f(x)
∂x1

∂f(x)
∂x2

. . . ∂f(x)
∂xn

]T
=

(
∂f(x)

∂xT

)T

(30)

We see that given this more precise notation, the gradient of a scalar func-
tion s(x) : Rn → R1 can then be written as the partial derivative with respect

to the column vector x yielding a column vector as desired (i.e. ∇xs(x) = ∂s(x)
∂x )

Another important property is the chain rule for vector derivatives. For two
functions defined over the same space f , g: Rn → Rn, we can decompose the
product as:

∂f(x)T g(x)

∂xT
= g(x)T

∂f(x)

∂xT
+ f(x)T

∂g(x)

∂xT
(31)

Or equivalently:

∇x

[
f(x)T g(x)

]
= ∇x [f(x)] g(x) +∇x [g(x)] f(x) (32)

4 Practice Problems

For use in the following problems, we define a matrix W ∈ Rm×n to be given
by:

W =


w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n

...
...

. . .
...

wm,1 wm,2 . . . wm,n

 (33)

and let wi =
[
wi,1 wi,2 . . . wi,n

]
is the i’th row of W .

1) Compute ∂Wx
∂xT and ∇x [Wx]. (Note they are different!)

First, let Wx = y. Then observe, y =
[
wT

1 x wT
2 x . . . wT

mx
]T

.
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For a given yi, we see yi = wT
i x =

∑n
j=1 wi,jxj , and thus it’s partial deriva-

tive with respect to a given xj is given by:

∂yi
∂xj

= wi,j (34)

Therefore,

∂Wx

∂xT
=


∂y1

∂x1

∂y1

∂x2
. . . ∂y1

∂xn
∂y2

∂x1

∂y2

∂x2
. . . ∂y2

∂xn

...
...

. . .
...

∂ym

∂x1

∂ym

∂x2
. . . ∂ym

∂xn

 =


w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n

...
...

. . .
...

wm,1 wm,2 . . . wm,n

 = W (35)

And thus applying equation 30, we get:

∇x [Wx] =

(
∂Wx

∂xT

)T

= W T (36)

2) For x, z ∈ Rn compute ∂xT z
∂xT and ∂zTx

∂xT and their corresponding gradients.

∂xTz

∂xT
=
[
∂xT z
∂x1

∂xT z
∂x2

. . . ∂xT z
∂xn

]
=
[
z1 z2 . . . zn

]
= zT

∴ ∇x

[
xTz

]
= z

(37)

Similarly,

∂zTx

∂xT
=
[
∂zTx
∂x1

∂zTx
∂x2

. . . ∂zTx
∂xn

]
=
[
z1 z2 . . . zn

]
= zT

∴ ∇x

[
zTx

]
= z

(38)

3) For A ∈ Rn×n use the product rule to compute ∂xTAx
∂xT and ∇x

[
xTAx

]
Using the product rule for vector derivatives with f(x) = x and g(x) = Ax

we get:

∂xTAx

∂xT
= g(x)T

∂f(x)

∂xT
+ f(x)T

∂g(x)

∂xT

= xTAT I + xTA

= xT
(
AT + A

) (39)
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5 References

1. See The Matrix Cookbook for many useful identities but note they use a
difference in convention for vector derivatives.

2. See [”On the concept of matrix derivative” by Jan R. Magnus] for more
details on a generalized form of the matrix derivative and it’s associated
product and chain rules.
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https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.sciencedirect.com/science/article/pii/S0047259X10001120
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